Pemodelan Simulasi dalam Pengoptimalan Penjualan Plastik HD Menggunakan Metode Monte Carlo

  • Elvina Rahayu
    Universitas Adzkia

  • Muhammad Thoriq
    Universitas Adzkia

  • Sopi Sapriadi
    Universitas Adzkia


Keywords: Monte Carlo, Optimasi, Simulasi, Penjualan, Modeling

Abstract

Simulation modeling is used as a tool to see a picture of the company's condition in the future and as a forum for making a decision. Currently, sales are an important activity and a factor that must be considered in future planning. The purpose of sales is to bring profit or profit from products or services produced with good management. Simulation can help solve everyday problems such as existing problems, with simulation applications estimating the number of sales is very important. If someone can predict the number of sales, the cost of procurement and storage of goods can be minimized. From this, several parties can bring in profits as much as possible, and minimize losses. There are 18 sales sample data processed in this study, namely sales data from 2021 to 2022. Sales data is processed using the Monte Carlo method from January 2021 to June 2021 to predict results for July to December 2021. Then for July to December 2021 to predict the results for January to June 2022. The data is tested with various elements of probability using a random sample. A powerful numerical calculation tool by simulating statistical data, this simulation obtains accurate accuracy values ​​from the observable physical form of the system. Implementation of calculations will be developed using an application-based system that will be built with the JAVA programming language. The test results that have been obtained in the form of the average number of product requests and average income will be used as an estimate of sales (state estimate) that can assist in making decisions based on the information that has been obtained. The data obtained has an accuracy rate of up to 80%.

References

Geni, B. Y., Santony, J., & Sumijan. (2019). Prediksi Pendapatan Terbesar pada Penjualan Produk Cat dengan Menggunakan Metode Monte Carlo. Jurnal Informatika Ekonomi Bisnis, 1(4), 15-20. https://doi.org/10.37034/infeb.v1i4.5

Fahdia, M. R., Kurniawati, I., Amsury, F., Heriyanto, & Saputra, I. (2022). Pelatihan Digital Marketing Untuk Meningkatkan Penjualan Bagi UMKM Tajur Halang Makmur. Abdiformatika: Jurnal Pengabdian Masyarakat Informatika, 2(1), 34–39. https://doi.org/10.25008/abdiformatika.v2i1.147

Hayati, N. (2020). Optimalisasi Prediksi Penjualan Produk Herbal Menggunakan Metode Monte Carlo dalam Meningkatkan Transaksi. Jurnal Informatika Ekonomi Bisnis, 2(4), 117-122. https://doi.org/10.37034/infeb.v2i4.54

Thoriq, M. (2022). Peramalan Jumlah Permintaan Produksi Menggunakan Jaringan Saraf Tiruan Algoritma Backpropagation. Jurnal Informasi dan Teknologi, 4(1), 27-32. https://doi.org/10.37034/jidt.v4i1.178

Manurung, K. H., & Santony, J. (2019). Simulasi Pengadaan Barang Menggunakan Metode Monte Carlo. Jurnal Sistim Informasi dan Teknologi, 1(3), 7-11. https://doi.org/10.21108/indojc.2017.2.2.174

Muhazir, A. (2022). Penerapan Metode Monte Carlo dalam Memprediksi Jumlah Penumpang Kereta Api (Studi Kasus: PT. Kai Wilayah Sumatra). Journal of Science And Social Research, 5(1), 151-158. https://doi.org/10.54314/jssr.v5i1.825

Yusmaity, Santony, J., & Yunus, Y. (2019). Simulasi Monte Carlo untuk Memprediksi Hasil Ujian Nasional (Studi Kasus di SMKN 2 Pekanbaru). Jurnal Informasi Dan Teknologi, 1(4), 1-6. https://doi.org/10.37034/jidt.v1i4.21

Syaputra, A. E., & Eirlangga, Y. S. (2022). Prediction of Patient Visit Rates Using the Monte Carlo Method. Jurnal Informasi Dan Teknologi, 4(2), 97-102. https://doi.org/10.37034/jidt.v4i2.202

Sapriadi, S., Yunus, Y., & Dari, R. W. (2022). Prediction of the Number of Arrivals of Training Students with the Monte Carlo Method. Jurnal Informasi Dan Teknologi, 4(1), 9-13. https://doi.org/10.37034/jidt.v4i1.168

Mulia, J. R., & Nurcahyo, G. W. (2022). Prediksi Pemakaian Obat Kronis Menggunakan Metode Monte Carlo. Jurnal Informasi Dan Teknologi, 4(2), 81-85. https://doi.org/10.37034/jidt.v4i2.198

Astia, R. Y., Santony, J., & Sumijan, S. (2019). Prediction Of Amount of Use of Planning Family Contraception Equipment Using Monte Carlo Method (Case Study In Linggo Sari Baganti District). Indonesian Journal of Artificial Intelligence and Data Mining, 2(1), 28-36. http://dx.doi.org/10.24014/ijaidm.v2i1.5825

Trisna, N., Safitri, W., & Pratiwi, M. (2019). Penerapan Sistem Antrian sebagai Upaya Pengoptimalkan Pelayanan terhadap Pasien pada Loket Pengambilan Obat di RSI. Ibnu Sina Pasaman Barat dengan menggunakan Metode Monte Carlo. (JurTI) Jurnal Teknologi Informasi, 3(1), 7-15. https://doi.org10.35457antivirus.v12i1.429

Lubis, R. (2022). Simulasi Jenis Penyakit Pasien yang Berobat Menggunakan Metode Monte Carlo. Jurnal Sistim Informasi Dan Teknologi, 4(2), 42–46. https://doi.org/10.37034/jsisfotek.v4i2.121

Varera, O. J. (2022). Optimalisasi Prediksi Tingkat Pendapatan Desa Berdasarkan Jenis Usaha Menggunakan Metode Monte Carlo. Jurnal Informatika Ekonomi Bisnis, 4(1), 23-27. https://doi.org/10.37034/infeb.v4i1.120

Sawabe, R., Ito, N., & Awano, Y. (2017). Advanced quasi-self-consistent Monte Carlo simulations on high-frequency performance of nanometer-scale GaN HEMTs considering local phonon distribution. In International Conference on Simulation of Semiconductor Processes and Devices, SISPAD(Vol. 2017-September, pp. 285-288). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.23919/SISPAD.2017.8085320

Forth, L., Speller, R., & Moss, R. (2018). The Importance of Accurate X-ray Energy Spectra for Modelling Dose Deposition with Monte Carlo Techniques. In 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2017 - Conference Proceedings. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/NSSMIC.2017.8533113

Mastanbasheer, S., Sheu, G., Sai Dheeraj, M., Jaiswal, S., & Neyaz Imam, S. (2017). A analytical study of depth profiling for MeV implants by using Monte Carlo and Taurus models. In 2017 6th International Symposium on Next Generation Electronics, ISNE 2017. Institute of Electrical and Electronics Engineers Inc.https://doi.org/10.1109/ISNE.2017.7968720

Novriansyah, A., Riswati, S. S., Bae, W., & Khalid, I. (2018). Predicting Geothermal Reserves of Sorik-Marapi Field through Monte-Carlo Simulation Study. In Proceedings - 2018 2nd International Conference on Green Energy and Applications, ICGEA 2018 (pp. 5-9). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICGEA.2018.8356318

De Castro Assis, S., do Couto Boaventura, W., Paulino, J. O. S., & Markiewicz, R. L. (2017). Lightning Performance of Transmission Line with and without Surge Arresters: Comparison between a Monte Carlo method and field experience. Electric Power Systems Research, 149, 169-177.https://doi.org/10.1016/j.epsr.2017.04.012

Bertot, Genaud & Gossa. (2018). An Overview of Cloud Simulation Enhancement Using the Monte-Carlo Method. 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID) Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/CCGRID.2018.00064

Deepradit, S., Pisuchpen, R., & Ongkunaruk, P. (2017). The harvest planning of aromatic coconut by using Monte Carlo simulation. In 2017 4th International Conference on Industrial Engineering and Applications, ICIEA 2017 (pp. 116-120). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/IEA.2017.7939190

El-Adawi, R., & Dessouky, M. (2017). Monte Carlo general sample classification for rare circuit events using Random Forest. In SMACD 2017 - 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/SMACD.2017.7981599

Oates, C. J., Girolami, M., & Chopin, N. (2017). Control functionals for Monte Carlo integration. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 79(3), 695-718. https://doi.org/10.1111/rssb.12185

Rodriguez, D. C., Rossi, F., Seya, M., & Koizumi, M. (2017, October). Delayed Gamma-Ray Spectroscopy Inverse Monte Carlo Analysis Method for Nuclear Safeguards Nondestructive Assay Applications. In 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (pp. 1-3). IEEE. https://doi.org/10.1109/NSSMIC.2017.8532898

Xiaoyan, Z., Peng, Z., & Qisong, Z. (2018). Research on information fusion method for mobile electronic commerce based on improved Monte Carlo algorithm under big data environment. In Proceedings of the 30th Chinese Control and Decision Conference, CCDC 2018 (pp. 3671-3675). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/CCDC.2018.8407760

Lapin, A. P., & Alsheva, K. V. (2017). Investigation Of Conversion Function For Vortex Sonic Flowmeter Using Monte Carlo Method. In Proceedings - 2017 2nd International Ural Conference on Measurements, UralCon 2017 (Vol. 2017-November, pp. 54-57). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/URALCON.2017.8120686

Lyashenko, Y. O., Morozovich, V. V., & Liashenko, O. Y. (2017). The lattice Monte Carlo method for calculating the effective diffusivities in the nanostructured two-phase media. In Proceedings of the 2017 IEEE 7th International Conference on Nanomaterials: Applications and Properties, NAP 2017 (Vol. 2017-January). Institute of Electrical and Electronics Engineers Inc.nhttps://doi.org/10.1109/NAP.2017.8190401

Yan, X., Chen, J., & Yang, W. (2018). Monte Carlo Analysis of Orbital Station Motion Parameter Errors Influence on Sar Azimuth Resolution Degradation. (pp. 7805-7808). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/igarss.2018.8518901

Yudiana, Y., Hafidhuddin, D., & Ismal, R. (2018). Pengukuran Risiko Operasional Pada Bank Syariah Indonesia (Studi Kasus Bank Syariah XYZ). Jurnal Aplikasi Bisnis Dan Manajemen, 4(2). https://doi.org/10.17358/jabm.4.2.179.

Published
2022-11-27
Section
Articles
How to Cite
Rahayu, E., Thoriq, M., & Sapriadi, S. (2022). Pemodelan Simulasi dalam Pengoptimalan Penjualan Plastik HD Menggunakan Metode Monte Carlo . Jurnal Informasi Dan Teknologi, 4(4), 247-252. https://doi.org/10.37034/jidt.v4i4.245