Peramalan Jumlah Permintaan Produksi Menggunakan Jaringan Saraf Tiruan Algoritma Backpropagation

Main Article Content

Muhammad Thoriq

Abstract

Artificial Neural Network (ANN) technique has developed rapidly in the field of estimation. ANN can predict based on data on events and related factors that existed in the past. ANN has advantages in parallel computing in classifying patterns. ANN is also capable of self-regulating the data to be processed without requiring an explicit function specification. The advantage of using ANN is the elimination of complex analytical and numerical iterative computations. The ANN method that is often used in prediction case studies is the Backpropagation Algorithm. This algorithm has the ability to solve problems in the real world by building trained methods that show good performance on large data scales and are able to overcome complex pattern recognition. This study aims to predict the demand for salt optimally using the ANN Method with the Backprogation Algorithm at PT. Kurnia Garam Prosperous Padang City. This forecasting is needed because of the high cost of production with the large number of requests that occur to be more effective. Proper forecasting will be able to optimize production so that it can reduce the required production costs. The data processed is salt production data from 2016 to 2018 at PT. Kurnia Garam Prosperous. The momentum results obtained are 3-9-1 for dividing the data into 2, namely 24 training data and 12 test data. The optimal prediction result is 0.98946, so this research is very helpful in forecasting optimal and efficient production costs.

Article Details

How to Cite
Thoriq, M. (2022). Peramalan Jumlah Permintaan Produksi Menggunakan Jaringan Saraf Tiruan Algoritma Backpropagation. Jurnal Informasi Dan Teknologi, 4(1), 27-32. https://doi.org/10.37034/jidt.v4i1.178
Section
Articles

References

[1] Rahayu, R. Wihandika, R. C. & Perdana, R. S. (2018). Implementasi Metode Backpropagation Untuk Klasifikasi Kenaikan Harga Minyak Kelapa Sawit. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(4) 1547–1552.
[2] Darius P., Andrius K., Audrius K., Vaiva Š., Rytis M., and Robertas D. (2019), "Predicting the Frequency Characteristics of Hybrid Meander Systems Using a Feed-Forward Backpropagation Network", Electronics 2019, 8, 85; doi:10.3390/electronics8010085
[3] Ismanto, E., Effendi, N., & Cynthia, E. P. (2018). Implementation of Backpropagation Artificial Neural Networks to Predict Palm Oil Price Fresh Fruit Bunches. IJISTECH (International Journal of Information System & Technology), 2(1), 26. DOI: https://doi.org/10.30645/ijistech.v2i1.17 .
[4] Yessa, A. R., & Hardjianto, M. (2020). Prediction of Water Use Using Backpropagation Neural Network Method and Particle Swarm Optimization. Bit-Tech 2(3).
[5] Putri, D. A., Hananto, B., Afrizal, S., & Pangaribuan, A. B. (2019). Prediksi Program Studi Berdasarkan Nilai Siswa dengan Algoritma Backpropagation (Studi Kasus SMAN 6 Depok Jurusan IPS). Informatik Jurnal Ilmu Komputer, 15(2).
[6] Windarto, A. P., Lubis, M. R., & Solikhun, S. (2018). Model Arsitektur Neural Network dengan Backpropogation Pada Prediksi Total Laba Rugi Komprehensif Bank Umum Konvensional. Klik Jurnal Ilmiah Kumpulan Jurnal Ilmu Komputer, 5(2), 147. DOI: https://doi.org/10.20527/klik.v5i2.148
[7] Norhikmah, N., & Rumini, R. (2020). Klasifikasi Peminjaman Buku Menggunakan Neural Network Backpropagation. Jurnal SISTEMASI, 9(1). DOI: https://doi.org/10.32520/stmsi.v9i1.562 .
[8] Zbigniew G. (2018), "Backpropagation algorithm with fractional derivatives", ITM Web of Conferences 21, 00004, https://doi.org/10.1051/itmconf/20182100004
[9] Nur Y., Fathur Z.R., Nurwahidah J., Era P., dan Fachrurozy. (2018), " Jaringan Syaraf Tiruan Untuk Pengenalan Citra Sidik Jari Pada Smart Home", Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), Vol. 5, No. 5, Oktober 2018, hlm. 597-604. DOI: 10.25126/jtiik2018551032.
[10] Nerfita N., Hendra K., Nola R., dan Denny K. (2018), "Optimasi Jaringan Syaraf Tiruan Backpropagation Dengan Particle Swarm Optimization Untuk Prediksi Pasang Surut Air Laut", Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), Vol. 5, No. 5, Oktober 2018, hlm. 605-612. DOI: 10.25126/jtiik2018551055.
[11] Budy S. (2018), "Prediksi Volume Penggunaan Air PDAM Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation", Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 2 No. 3, hal: 674-686, DOI: https://doi.org/10.29207/resti.v2i3.575
[12] R. Rahmiyanti., Sarjon D., dan Yuhandri Y (2021), “Prediksi dan Klasifikasi Buku Menggunakan Metode Backpropagation”, Jurnal Informasi dan Teknologi Vol. 3 No. 3 (2021) 109-114. DOI: 10.37034/jidt.v3i3.116
[13] Feng, X., He, P., Zhang, H., Yin, W., Qian, Y., Cao, P., & Hu, F. (2019). Rice Seeds Identification Based on Back Propagation Neural Network Model. International Journal of Agricultural and Biological Engineering, 12(6), 122–128. DOI: http://doi.org/10.25165/j.ijabe.20191206.5044 .
[14] Minarni, M., Salumbae, R., & Hasbi, Z. (2018). Implementasi Jaringan Syaraf Tiruan (JST) dan Pengolahan Citra Untuk Klasifikasi Kematangan TBS Kelapa Sawit. Komunikasi Fisika Indonesia, 15(1), 36. DOI: http://doi.org/10.31258/jkfi.15.1.36-45 .
[15] Moham, N., Dwiyanto, F. A., Pakpahan, H. S., Islamiyah, I., & Setyadi, H. J. (2019). Pengenalan Karakter Tulisan Menggunakan Metode Backpropagation Neural Network. Sains, Aplikasi, Komputasi dan Teknologi Informasi, 1(2), 14. DOI: http://doi.org/10.30872/jsakti.v1i2.2601 .
[16] Hasan, N. F., Kusrini, K., & Fatta, H. A. (2019). Analisis Arsitektur Jaringan Syaraf Tiruan Untuk Peramalan Penjualan air Minum dalam Kemasan. Jurnal Rekayasa Teknologi Informasi (JURTI), 3(1). DOI: https://doi.org/10.30872/jurti.v3i1.2290 .
[17] Sovia, R., Yanto, M., & Melati, P. (2020). Prediksi Jumlah Kunjungan Wisata Mancanegara dengan Algoritma Backpropagation. Jurnal Media Informasi Budidarma, 4(2). DOI: http://doi.org/10.30865/mib.v4i2.2048 .