Precision Medicine Through Support Vector Machines Analyzing Patient Data for Improved Drug Classification
Main Article Content
Abstract
Selecting the appropriate medication is crucial for ensuring optimal therapeutic outcomes and minimizing adverse effects for patients. Healthcare personnel are managing an increasing volume of medical data in the digital era. Identifying swift, precise, and dependable methods for recommending appropriate medications is becoming essential. This study aims to meet this criterion by classifying drugs into appropriate categories for patient care using the Support Vector Machine (SVM) technology. The research utilized a dataset from GitHub comprising 200 patient records. These records furnish critical information regarding the patient, including age, sex, blood pressure, cholesterol levels, sodium-to-potassium ratios, and prescriptions. To maximize the use of this data, the method entails several critical steps: selecting appropriate data, meticulously cleaning and organizing it, transforming it for analytical readiness, employing SVM for data mining, and conducting a comprehensive review. The dataset is divided into two segments which are 20% is allocated for testing the efficacy of the SVM model, while the remaining 80% is designated for training the model.The primary tool for constructing the SVM model is the Google Colaboratory platform, which utilizes Python. A confusion matrix is employed to meticulously evaluate the performance of a model. It provides valuable metrics such as accuracy, precision, recall, and the F1 score. The evaluation method indicates that the SVM model holds significant potential for systematically assessing patient data due to its capability to appropriately categorize various drug types. This discovery represents a significant advancement for AI in healthcare, as it facilitates the prompt and straightforward recommendation of individualized medicines by physicians.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[2] F. A. Mardewi Mardewi, Nuru Yarkuran, Sofyan Sofyan, “KLASIFIKASI KATEGORI OBAT MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE,” J. Pharm. Appl. Comput. Sci., 2023, doi: https://doi.org/10.59823/jopacs.v1i1.19.
[3] B. P. S. (BPS), Profil Statistik Kesehatan 2023. 2023. [Online]. Available: https://www.bps.go.id/id/publication/2023/12/20/feffe5519c812d560bb131ca/profil-statistik-kesehatan-2023.html
[4] C.-F. H. Hao-Ren Yao, Der-Chen Chang, Ophir Frieder, Wendy Huang, MD, I-Chia Liang, MD, “Cross-Global Attention Graph Kernel Network Prediction of Drug Prescription,” ACM Digit. Libr., 2020, doi: https://doi.org/10.1145/3388440.3412459.
[5] R. K. Avik Sengupta, Saurabh Kumar Singh, “Support Vector Machine–Based Prediction Models for Drug Repurposing and Designing Novel Drugs for Colorectal Cancer,” ACS Omega, 2024, doi: https://doi.org/10.1021/acsomega.4c01195.
[6] S. B. Laili Nur Farida, “Klasifikasi Gagal Jantung menggunakan Metode SVM (Support Vector Machine),” Komputika J. Sist. Komput., 2024, doi: https://doi.org/10.34010/komputika.v13i2.11330.
[7] E. B. S. Wisnu Jayanata, Isman Kurniawan, “Implementasi Metode Support Vector Machine (SVM) pada Model Prediksi Rating Obat Berdasarkan Ulasan Pasien,” Log. J. Penelit. Inform., vol. 1, 2023, doi: https://doi.org/10.25124/logic. vlil.6410.
[8] T. H. Nur Ghaniaviyanto Ramadhan, Azka Khoirunnisa, Kurnianingsih, “A Hybrid ROS-SVM Model for Detecting Target Multiple Drug Types,” JOIV Int. J. Informatics Vis., 2023, doi: https://dx.doi.org/10.30630/joiv.7.3.1171.
[9] S. E. M. Purba, “A Comparative Study of Drug Prediction Models using KNN, SVM, and Random Forest,” ISI J. Inf. Syst. Informatics, 2025, doi: https://doi.org/10.51519/journalisi.v7i1.1013.
[10] Y. L. Yessy Phalentina br Sagala, Roman Samosir, “Investigation of The Increase in Drug Use in Medan City Using The Support Vector Machine (SVM) Method,” J. Comput. Networks, Archit. High Perform. Comput., 2024, doi: https://doi.org/10.47709/cnahpc.v6i3.4137.
[11] R. H. Dhini Septhya, Kharisma Rahayu, Salsabila Rabbani, Vindi Fitria, Rahmaddeni Rahmaddeni, Yuda Irawan, “Implementasi Algoritma Decision Tree dan Support Vector Machine untuk Klasifikasi Penyakit Kanker Paru,” Indones. J. Mach. Learn. Comput. Sci., 2023, doi: https://doi.org/10.57152/malcom.v3i1.591.
[12] R. H. Mariana Dewi, Triando Hamonangan Saragih, “Penerapan SMOTE-NCL untuk Mengatasi Keisian Kelas pada Klasifikasi Penyakit Jantung Koroner,” JIP (Jurnal Inform. Polinema), 2023, doi: https://doi.org/10.33795/jip.v10i1.1394.
[13] I. A. Rohmatullah Sony Wijaya, Arie Qur’ania, “Klasifikasi Penyakit Cacar Monyet Menggunakan Support Vector Machine (SVM),” Indones. J. Mach. Learn. Comput. Sci., 2024, doi: https://doi.org/10.57152/malcom.v4i4.1417.
[14] E. E. Fienda Altamevia, Harma Oktafia Lingga Wijaya, “Analisis Pola Penjualan Obat di Apotek Srikandi Menggunakan Algoritma Supervised Learning,” KESATRIA J. Penerapan Sist. Inf. (Komputer Manajemen), 2023, doi: https://doi.org/10.30645/kesatria.v4i1.127.
[15] S. Tita Risa Dewanti, Rastri Prathivi, “IMPLEMENTASI METODE SVM UNTUK KLASIFIKASI PENYAKIT STUNTING BAYI,” J. Inform. Teknol. dan Sains, vol. 7, 2025, doi: 10.51401/jinteks.v7i1.5070.
[16] A. D. Dina Elly Yanti, Lizah Framesti, “PERBANDINGAN ALGORITMA C4.5 DAN SVM DALAM KLASIFIKASI PENYAKIT ANEMIA,” JIP (Jurnal Inform. Polinema), 2023, doi: https://doi.org/10.33795/jip.v9i4.1381.
[17] A. S. Anita Desiani, Sri Indra Maiyanti, Yuli Andriani, Bambang Suprihatin, Ali Amran, Chika Marselina, “Perbandingan Klasifikasi Penyakit Kanker Paru-paru menggunakan Support Vector Machine dan K-Nearest Neighbor,” J. Process., 2023, doi: https://doi.org/10.33998/processor.2023.18.1.700.
[18] Y. S. D. Lutfi Ardining Tyas, I Made Tirta, “PENERAPAN MODEL LEAST SQUARE SUPPORT VECTOR MACHINE (LSSVM) UNTUK PERAMALAN KASUS COVID-19 DI INDONESIA,” J. Gaussian, 2023, doi: https://doi.org/10.14710/j.gauss.12.2.304-313.
[19] Z. S. H. Hamdalla Fadil Kareem, Muayed S AL-Huseiny, Furat Y. Mohsen, Enam A. Khalil, “Evaluation of SVM performance in the detection of lung cancer in marked CT scan dataset,” Indones. J. Electr. Eng. Comput. Sci., 2021, doi: http://doi.org/10.11591/ijeecs.v21.i3.pp1731-1738.
[20] S. T. P. Rohit Chivukula, T. Jaya Lakshmi, Sanku Satya Uday, “Classifying clinically actionable genetic mutations using KNN and SVM,” Indones. J. Electr. Eng. Comput. Sci., 2021, doi: http://doi.org/10.11591/ijeecs.v24.i3.pp1672-1679.
[21] D. K. Pramudito, M. Tubagus, A. Ismail, F. D. Anggraini, and C. C. Pradnya Paramita, “Application of Support Vector Machine and Naive Bayes Method to Analyze Mobile Banking User Behavior Through social media Twitter.”, jidt, vol. 5, no. 4, pp. 325-330, Jan. 2024. doi: https://doi.org/10.60083/jidt.v5i4.462
[22] D. K. Pramudito, S. Arijanti, Z. Akbar, R. Haribowo, and P. Diawati, “The Application of Developed Delone & McLean Method to Analyze The Success and Effectiveness of Alfagift Application Among Big Cities’ Users in Indonesia”, jidt, vol. 5, no. 4, pp. 111-117, Dec. 2023. doi: https://doi.org/10.60083/jidt.v5i4.424
[23] M. Kasendra, D. K. Pramudito, and D. Afandi, “The Soil Moisture Monitoring Utilize IoT System To Improve Urban Farming Productivity and Enhance Food Security ”, jidt, pp. 1-12, Apr. 2025. doi: https://doi.org/10.60083/jidt.vi0.609