Prediction Of Industrial Waste Using The Autoregressive Integrated Moving Average Method

Main Article Content

Roslaini Roslaini
Dahlan Abdullah
Rizki Suwanda

Abstract

This study presents the development of a web-based industrial waste prediction system using the Autoregressive Integrated Moving Average (ARIMA) method to forecast the volume of liquid and solid waste generated by PT Pupuk Iskandar Muda (PIM). The predictive model is built upon historical waste data collected between 2020 and 2023, serving as the foundation for the statistical analysis. The system is developed using the Flask web framework, offering an interactive and user-friendly interface, while SQLite3 is employed as a lightweight local database solution for efficient data handling. The ARIMA (1,1,1) model was selected based on stationarity testing and examining ACF and PACF patterns. The results suggest that the model can moderately capture prediction trends, although limitations in accuracy are evident. For 2024, liquid waste is projected to decrease from 30,600 tons in January to 29,400 tons in December. In contrast, solid waste displays a more stable trend, with an average monthly generation of approximately 23.2 tons. Model performance was evaluated using the Mean Absolute Percentage Error (MAPE) method, yielding high error rates—166.11% for liquid waste and 100% for solid waste, highlighting the significant impact of data quality and completeness on prediction accuracy. The system generates visual outputs through interactive graphs and tables accessible via a web browser, supporting data-driven decision-making. This research is a predictive tool for PT PIM and a reference for future development of technology-driven waste management systems to promote environmental sustainability.

Article Details

How to Cite
Roslaini, R., Abdullah, D., & Suwanda, R. (2025). Prediction Of Industrial Waste Using The Autoregressive Integrated Moving Average Method. Jurnal Informasi Dan Teknologi, 11-20. https://doi.org/10.60083/jidt.vi0.624
Section
Articles
Author Biographies

Roslaini Roslaini, Universitas Malikussaleh

Department of Informatics, Faculty of Engineering

Dahlan Abdullah, Universitas Malikussaleh

Department of Informatics, Faculty of Engineering

Rizki Suwanda, Universitas Malikussaleh

Department of Informatics, Faculty of Engineering

References

[1] S. Nurman, M. Nusrang, and Sudarmin, “Analysis of Rice Production Forecast in Maros District Using the Box-Jenkins Method with the ARIMA Model,” ARRUS Journal of Mathematics and Applied Science, vol. 2, no. 1, pp. 36–48, 2022, doi: 10.35877/mathscience731.
[2] A. Nursabrina, T. Joko, and O. Septiani, “Kondisi Pengelolaan Limbah B3 Industri Di Indonesia Dan Potensi Dampaknya: Studi Literatur,” Jurnal Riset Kesehatan Poltekkes Depkes Bandung, vol. 13, no. 1, pp. 80–90, 2021, doi: 10.34011/juriskesbdg.v13i1.1841.
[3] M. Wati, A. Haviluddin, A. Masyudi, H. Septiarini, and H. Rahmania, “Autoregressive Integrated Moving Average (ARIMA) Model for Forecasting Indonesian Crude Oil Price,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 3, pp. 720–730, 2023, doi: 10.26555/jiteki.v9i3.22286.
[4] S. Sriploy and K. Lertpocasombut, “Industrial wastes to wastes disposal management by using box jenkins-arima models and created applications: Case study of four waste transport and disposal service providers in Thailand,” EnvironmentAsia, vol. 13, no. 1, pp. 124–139, 2020, doi: 10.14456/ea.2020.12.
[5] M. Stmik et al., “Sistem Informasi Manajemen Pemesanan Pada,” JTRISTE, vol. 6, no. 1, 2019.
[6] D. Anggraeyani, “PEMANFAATAN LIMBAH CAIR PT. PUPUK ISKANDAR MUDA (PIM) TERHADAP PERTUMBUHAN TANAMAN BUAH NAGA (Hylocereus Undatus),” 2019.
[7] D. Abdullah et al., “Data Mining to Determine Correlation of Purchasing Cosmetics with A priori Method,” J Phys Conf Ser, vol. 1361, no. 1, 2019, doi: 10.1088/1742-6596/1361/1/012056.
[8] G. C. Heriyanto, A. Handojo, and T. Octavia, “Prediksi Kebutuhan Darah Menggunakan Metode ARIMA Dengan Mempertimbangkan Faktor Deterioration,” Jurnal Infra, vol. 10, no. 2, pp. 219–225, 2022.
[9] M. Buchori and T. Sukmono, “Peramalan Produksi Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) di PT. XYZ,” PROZIMA (Productivity, Optimization and Manufacturing System Engineering), vol. 2, no. 1, pp. 27–33, 2018, doi: 10.21070/prozima.v2i1.1290.
[10] I. Nabillah and I. Ranggadara, “Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut,” JOINS (Journal of Information System), vol. 5, no. 2, pp. 250–255, 2020, doi: 10.33633/joins.v5i2.3900.
[11] D. Emilia, “Pengelolaan Limbah Industri : Solusi Lingkungan untuk Industri yang Berkelanjutan,” Circle Archive, vol. 1, no. 3, pp. 2–11, 2023.