Prediksi Perkembangan Nilai Impor Komoditas Utama di Provinsi Sumatera Selatan Menggunakan C4.5
Main Article Content
Abstract
Currently, our world is still being hit by the Covid-19 virus which has impacted society, experiencing a rapid decline in the economy. At present we are entering a market where the economy is very minimal, especially in the province of South Sumatra. This affects the import value of main commodities in South Sumatra Province. So in this study, researchers conducted trials in classifying matters related to cases of predicting the level of development of the value of imports of main commodities in South Sumatra Province. In this study, predictions will be made on the level of development of the value of imports of key commodities by applying the C4.5 method, so that they can be used as material for decision-making in building a more advanced government. Based on the results of the trial, the conclusion obtained is that as an importer, you should be wiser in determining the value of imports, especially if the wealth in our province is of greater interest to other countries. So far, the South Sumatra Province has a higher import value of fertilizer compared to other types of imports. This can be used in making a policy that is significant enough to be able to make the import value prices in the South Sumatra Province all high. Based on the trial results using the orange application, an accuracy of 96.15% was obtained, meaning it had an error rate of 13.85%. This shows from the results of testing using the Decision Tree that it is very good enough to be used in predicting the level of import value.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[2] V. P. Semenov dan T. S. Yagya, “On Foreign Experience of Import Substitution: Lessons for Russia,” Proc. 2018 Int. Conf. ’ ’Quality Manag. Transp. Inf. Secur. Inf. Technol. IT QM IS 2018, no. 1, hal. 864–867, 2018, doi: 10.1109/ITMQIS.2018.8525057.
[3] J. L. G. Alcaraz, R. D. Reza, E. J. MacIas, R. P. I. Vidal, F. J. F. Montalvo, dan A. S. T. Ledesma, “Effect of the Sustainable Supply Chain on Business Performance - The Maquiladora Experience,” IEEE Access, vol. 10, hal. 40829–40842, 2022, doi: 10.1109/ACCESS.2022.3166193.
[4] X. Liu, X. Xu, X. Li, dan G. Xie, “Estimating the number of imported COVID-19 risks by traffic from other districts using population mobility data,” 2020 IEEE Int. Conf. Healthc. Informatics, ICHI 2020, hal. 9–10, 2020, doi: 10.1109/ICHI48887.2020.9374353.
[5] R. Wang, “Research on the Relationship between China’s Import and Export Trade and Confidence Index-Dynamic Analysis based on VAR Model,” Proc. - 2020 2nd Int. Conf. Econ. Manag. Model Eng. ICEMME 2020, hal. 308–311, 2020, doi: 10.1109/ICEMME51517.2020.00065.
[6] V. P. Semenov dan L. Y. Baranova, “About Import Substitution in the Field of Information Technologies,” Proc. 2018 Int. Conf. ’ ’Quality Manag. Transp. Inf. Secur. Inf. Technol. IT QM IS 2018, hal. 860–863, 2018, doi: 10.1109/ITMQIS.2018.8525112.
[7] A. Setiawan, A. Wibowo, dan F. Rosyid, “Analisis pengaruh ekspor dan konsumsi batubara terhadap pertumbuhan ekonomi Indonesia,” J. Teknol. Miner. dan Batubara, vol. 16, no. 2, hal. 109–124, 2020, doi: 10.30556/jtmb.vol16.no2.2020.1081.
[8] F. M. Mambetova, R. A. Shibzuhova, A. K. Shidov, E. B. Abanokova, dan M. K. Mashukova, “Forecasting and Assessment of Innovative Factors of Technological Breakthrough in the Import Substitution and Food Security,” Proc. 2018 Int. Conf. ’ ’Quality Manag. Transp. Inf. Secur. Inf. Technol. IT QM IS 2018, no. 1, hal. 851–853, 2018, doi: 10.1109/ITMQIS.2018.8525026.
[9] Z. Yan, “Research of the Impact of Big Data on Enterprise Import and Export Based on Economic Globalization,” Proc. - 2020 Int. Conf. Big Data Artif. Intell. Softw. Eng. ICBASE 2020, hal. 19–22, 2020, doi: 10.1109/ICBASE51474.2020.00011.
[10] M. A. Buyanova, M. S. Shiro, dan A. V. Kozlov, “Regional Economy Clustering as Effective Import Substitution Factor,” Proc. 2018 Int. Conf. ’ ’Quality Manag. Transp. Inf. Secur. Inf. Technol. IT QM IS 2018, no. 1, hal. 828–831, 2018, doi: 10.1109/ITMQIS.2018.8525082.
[11] S. E. Rahayu dan H. Febriaty, “Analisis Perkembangan Produksi Beras Dan Impor Beras Di Indonesia,” Proseding Semin. Nas. Kewirausahaan, vol. 1, no. 1, hal. 219–226, 2019, doi: DOI: https://doi.org/10.30596/snk.v1i1.3613.
[12] M. Yusuf dan D. M. Rangkuty, “Analisis Neraca Perdagangan Indonesia-India Periode 2013-2018,” Penelit. Medan Agama, vol. 10, no. 1, hal. 56–68, 2019, doi: http://dx.doi.org/10.58836/jpma.v10i1.5693.
[13] E. Purnamasari, D. Palupi Rini, P. Studi Magister Ilmu Komputer, F. Ilmu Komputer, dan U. Sriwijaya Palembang, “Seleksi Fitur menggunakan Algoritma Particle Swarm Optimization pada Klasifikasi Kelulusan Mahasiswa dengan Metode Naive Bayes,” J. RESTI (Rekayasa Sist. Dan Teknol. Informasi), vol. 1, no. 3, hal. 469–475, 2020, doi: https://doi.org/10.29207/resti.v4i3.1833.
[14] I. G. I. Suardika, “Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu Menggunakan Naive Bayes: Studi Kasus Fakultas Ekonomi Dan Bisnis Universitas Pendidikan Nasional,” J. Ilmu Komput. Indones., vol. 4, no. 2, hal. 37–44, 2019, doi: 10.23887/jik.v4i2.2775.
[15] E. Purnamasari, D. P. Rini, dan Sukemi, “Prediction of the Student Graduation’s Level using C4.5 Decision Tree Algorithm,” ICECOS 2019 - 3rd Int. Conf. Electr. Eng. Comput. Sci. Proceeding, hal. 192–195, 2019, doi: 10.1109/ICECOS47637.2019.8984493.
[16] R. P. S. Putri dan I. Waspada, “Penerapan Algoritma C4.5 pada Aplikasi Prediksi Kelulusan Mahasiswa Prodi Informatika,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 4, no. 1, hal. 1–7, 2018, doi: 10.23917/khif.v4i1.5975.
[17] E. Purnamasari, D. P. Rini, dan Sukemi, “The Combination of Naive Bayes and Particle Swarm Optimization Methods of Student’s Graduation Prediction,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 5, no. 2, hal. 101, 2019, doi: 10.26555/jiteki.v5i2.15317.
[18] S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no. 1, hal. 16–25, 2019, doi: 10.36787/jti.v13i1.78.
[19] H. W. Nugroho, T. B. Adji, dan N. A. Setiawan, “Performance Improvement of C4.5 Algorithm using Difference Values Nodes in Decision Tree,” 2018 6th Int. Conf. Cyber IT Serv. Manag. CITSM 2018, no. Citsm, hal. 1–6, 2018, doi: 10.1109/CITSM.2018.8674250.
[20] A. A. Haruna, L. J. Muhammad, B. Z. Yahaya, E. J. Garba, N. D. Oye, dan L. T. Jung, “An Improved C4.5 Data Mining Driven Algorithm for the Diagnosis of Coronary Artery Disease,” Proceeding 2019 Int. Conf. Digit. Landscaping Artif. Intell. ICD 2019, no. 2, hal. 48–52, 2019, doi: 10.1109/ICD47981.2019.9105844.
[21] A. Kesumawati dan D. T. Utari, “Predicting patterns of student graduation rates using Naïve bayes classifier and support vector machine Predicting Patterns of Student Graduation Rates Using Naïve Bayes Classifier and Support Vector Machine,” vol. 060005, no. October, 2018, doi: 10.1063/1.5062769.