Optimalisasi Pelayanan Perpustakaan terhadap Minat Baca Menggunakan Metode K-Means Clustering
Main Article Content
Abstract
Knowledge Discovery in Database (KDD) is a structured analysis process aimed at getting new and correct information, finding patterns from complex data, and being useful. Data mining is at the core of the KDD process. Clustering is a data mining method that is suitable for optimizing library services because it can cluster books effectively and efficiently, with the K-Means algorithm data can be clustered and information from each centroid value of each cluster. Library services can optimize the placement of books so that students can quickly find books according to their reading interest more effectively and can be attracted to other books because they are in one grouping. Meanwhile, the library can prioritize the procurement of the next book. Optimization of library services in the cluster using the K-Means method. Clustering interest in reading has the criteria for the number of books available, borrowed books, and the length of time the books are borrowed. The book data is clustered into 3, namely very interested, in demand, and less desirable. After doing the calculation process from 40 samples of book types, it resulted in 6 iterations, and the final results were 3 clustering, namely cluster 1 of 4 books that were of great interest, cluster 2 of 20 books that were of interest, and cluster 3 of 16 books that were less desirable. This research can be used as a recommendation reference for optimizing library services both for the layout and procurement of books by prioritizing the types of books that are of great interest.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[2] Virgo, I., Defit, S., & Yunus, Y. (2020). Klasterisasi Tingkat Kehadiran Dosen Menggunakan Algoritma K-Means Clustering (Studi Kasus Institut Agama Islam Batusangkar). Jurnal Sistim Informasi dan Teknologi, 2(1), 23–28. DOI: https://doi.org/10.37034/jsisfotek.v2i1.22 .
[3] Muttaqin, M. R., & Defriani, M. (2020). Algoritma K-Means untuk Pengelompokan Topik Skripsi Mahasiswa. ILKOM Jurnal Ilmiah, 12(2), 121-129. DOI: https://doi.org/10.33096/ilkom.v12i2.542.121-129 .
[4] Sari, R. W., Wanto, A., & Windarto, A. P. (2018). Implementasi Rapidminer dengan Metode K-means (Study Kasus: Imunisasi Campak pada Balita Berdasarkan Provinsi). KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), 2(1).
[5] Hidayad, A., Defit, S., & Sumijan, S. (2020). Penerapan Algoritma K-Means Clustering untuk Melihat Hubungan Kegiatan Tahfiz dengan Hasil Belajar (Studi Kasus Madrasah Aliyah Negeri 1 Bukiktinggi). Jurnal Sistim Informasi dan Teknologi, 2(2), 41-47. DOI: https://doi.org/10.37034/jsisfotek.v2i2.34 .
[6] Kurniawan, R., Defit, S., & Sumijan, S. (2020). Prediksi Tingkat Kerugian Peternak Akibat Penyakit pada Sapi Menggunakan Algoritma K-Means Clustering. Jurnal Informasi dan Teknologi, 3(1), 29-35. DOI: https://doi.org/10.37034/jidt.v3i1.87 .
[7] Wang, Y., Li, D., & Wang, Y. (2019). Realization of Remote Sensing Image Segmentation Based On K-Means Clustering. IOP Conference Series: Materials Science and Engineering, 490, 072008. DOI: https://doi.org/10.1088/1757-899x/490/7/072008 .
[8] Wye, K. F. P., Kanagaraj, E., Zakaria, S. M. M. S., Kamarudin, L. M., Zakaria, A., Kamarudin, K., & Ahmad, N. (2019). RSSI-based Localization Zoning using K-Mean Clustering. IOP Conference Series: Materials Science and Engineering, 705, 012038. DOI: https://doi.org/10.1088/1757-899x/705/1/012038 .
[9] Oliveira, M. R. G. De., Cruz , D. V. Da., & Cunha Filho, M. (2020). Non-hierarchical grouping: ‘K-mean’ and ‘K-medoid’ of plaques cisterns in the Pajeu region - PE. Acta Scientiarum. Technology, 42(1). DOI: https://doi.org/10.4025/actascitechnol.v42i1.44378 .
[10] Kamil, M. Y., & Salih, A. M. (2019). Mammography Images Segmentation via Fuzzy C-mean and K-mean. International Journal of Intelligent Engineering and Systems, 12(1), 22–29. DOI: https://doi.org/10.22266/ijies2019.0228.03 .
[11] Chandu, V. C. (2020). Identification of Spatial Variations in COVID-19 Epidemiological Data Using K-Means Clustering Algorithm: a Global Perspective. MedRxiv. DOI: https://doi.org/10.1101/2020.06.03.20121194 .
[12] Yahya, K., & Mahpuz, M. (2019). Penggunaan Algoritma K-Means Untuk Menganalisis Pelanggan Potensial Pada Dealer SPS Motor Honda Lombok Timur Nusa Tenggara Barat. Infotek : Jurnal Informatika dan Teknologi, 2(2), 109–118. DOI: https://doi.org/10.29408/jit.v2i2.1447 .
[13] Asyari, A. H., & Zagladi, A. N. (2020). Analisis Segmen Pasar Produk Handphone Berbasis Android di Lingkungan Mahasiswa di Banjarmasin. Jurnal Riset Inspirasi Manajemen dan Kewirausahaan, 4(1), 9–15. DOI: https://doi.org/10.35130/jrimk.v4i1.73 .
[14] Harani, N. H., Prianto, C., & Nugraha, F. A. (2020). Segmentasi Pelanggan Produk Digital Service Indihome Menggunakan Algoritma K-Means Berbasis Python. Jurnal Manajemen Informatika (JAMIKA), 10(2), 133-146. DOI: https://doi.org/10.34010/jamika.v10i2.2683 .
[15] Moubayed, A., Injadat, M., Shami, A., & Lutfiyya, H. (2020). Student Engagement Level in an e-Learning Environment: Clustering Using K-means. American Journal of Distance Education, 34(2), 137–156. DOI: https://doi.org/10.1080/08923647.2020.1696140 .