Text Data Classification Using the SVM Model on the LMDB Minecraft Dataset
Main Article Content
Abstract
Text classification is a fundamental task in Natural Language Processing (NLP) aimed at categorizing text data into predefined classes. This study implements a Support Vector Machine (SVM) model to classify text data from the LMDB Minecraft Dataset, which contains user reviews of the Minecraft movie. The research involves text preprocessing, TF-IDF feature extraction, and SVM model training. The classification results are evaluated using accuracy, precision, recall, f1-score, and confusion matrix metrics. The comment data is also analyzed based on the timing of their appearance in the movie. All processes are visualized in diagrams; the final results are saved in Excel format. The SVM model performs adequately on informal and domain-specific language data, providing a foundation for future research in similar text classification contexts.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[2] “PENERAPAN ANALISIS SENTIMEN DAN NAIVE BAYES TERHADAP OPINI PENGGUNAAN KENDARAAN LISTRIK DI TWITTER”.
[3] A. Lia Hananto et al., “Dirgamaya Jurnal Manajemen dan Sistem Informasi Strategi Promosi Penerapan Data Mining Mahasiswa Baru Dengan Metode K-Means Clustering.”
[4] M. Djaka Permana, A. Lia Hananto, E. Novalia, B. Huda, and T. Paryono, “Klasterisasi Data Jamaah Umrah pada Tanurmutmainah Tour Menggunakan Algoritma K-Means,” Jurnal KomtekInfo, pp. 15–20, Feb. 2023, doi: 10.35134/komtekinfo.v10i1.332.
[5] F. Fitriana, E. Utami, and H. Al Fatta, “Analisis Sentimen Opini Terhadap Vaksin Covid - 19 pada Media Sosial Twitter Menggunakan Support Vector Machine dan Naive Bayes,” Jurnal Komtika (Komputasi dan Informatika), vol. 5, no. 1, pp. 19–25, Jul. 2021, doi: 10.31603/komtika.v5i1.5185.
[6] S. Shofiah Hilabi and A. Fauzi, “Blockchain Application On Independent Smart Agriculture,” 2023. [Online]. Available: http://ijair.id
[7] I. Kurniawan et al., “Perbandingan Algoritma Naive Bayes Dan SVM Dalam Sentimen Analisis Marketplace Pada Twitter,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 10, no. 1, 2023, [Online]. Available: http://jurnal.mdp.ac.id
[8] “6912-Article Text-22502-1-10-20240430”.
[9] Tukino, B. Huda, A. Hananto, Hendry, E. Sediyono, and S. Aripiyanto, “Games Knowledge Model Development Indonesia Traditional Approach On-To-Knowledge,” 2023, pp. 494–505. doi: 10.2991/978-94-6463-284-2_55.
[10] “9326-Article Text-21077-1-10-20250205”.
[11] C. Handayani, B. Priyatna, A. Hananto, and T. Tukino, “Implementasi Metode Agile Development Dalam Perancangan Sistem Informasi Pendaftaran KB MKJP Berbasis Website,” Jurnal Ilmu Komputer dan Bisnis, vol. 16, no. 1, pp. 170–181, May 2025, doi: 10.47927/jikb.v16i1.1039.
[12] B. Priyatna and F. Nurapriani, “Implementasi Koordinat Google dan Citra Kamera Pada Aplikasi Monitoring Petugas Berbasis Android,” vol. 5, no. 1.
[13] “PENERAPAN ANALISIS SENTIMEN DAN NAIVE BAYES TERHADAP OPINI PENGGUNAAN KENDARAAN LISTRIK DI TWITTER”.
[14] D. Safitri, S. S. Hilabi, and F. Nurapriani, “ANALISIS PENGGUNAAN ALGORITMA KLASIFIKASI DALAM PREDIKSI KELULUSAN MENGGUNAKAN ORANGE DATA MINING,” Rabit : Jurnal Teknologi dan Sistem Informasi Univrab, vol. 8, no. 1, pp. 75–81, Jan. 2023, doi: 10.36341/rabit.v8i1.3009.
[15] M. Hatami, T. Tukino, F. Nurapriani, W. Widiyawati, and W. Andriani, “DETEKSI HELMET DAN VEST KESELAMATAN SECARA REALTIME MENGGUNAKAN METODE YOLO BERBASIS WEB FLASK,” EDUSAINTEK: Jurnal Pendidikan, Sains dan Teknologi, vol. 10, no. 1, pp. 221–233, Jan. 2023, doi: 10.47668/edusaintek.v10i1.651.
[16] O. Muhamad Nurfauzi, S. Shofiah Hilabi, F. Nurapriani, and B. Huda, “Analisis Sentimen Grab Indonesia pada Ulasan Google Play Store Menggunakan Algoritma Naïve Bayes dan Support Vector Machine,” SMARTICS Journal, vol. 11, no. 1, 2025, doi: 10.21067/smartics.v11i1.11789.
[17] A. L. Hananto, B. Priyatna, F. Nurapriani, M. Guntur, and M. Chinta, “Development of Information System for Price Control of Basic and Important Goods in Bekasi Regency.”
[18] U. Nijunnihayah, S. S. Hilabi, F. Nurapriani, and E. Novalia, “Implementasi Algoritma K-Nearest Neighbor untuk Prediksi Penjualan Alat Kesehatan pada Media Alkes,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 695–701, Apr. 2024, doi: 10.57152/malcom.v4i2.1326.
[19] M. Helmi Fauzi, B. Huda, E. Novalia, and U. Buana Perjuangan Karawang Karawang, “Analisis Sentimen User Experience Menggunakan Naive Bayes dan Design Thinking pada Aplikasi SIPT,” Remik: Riset dan E-Jurnal Manajemen Informatika Komputer, vol. 9, no. 2, 2025, doi: 10.33395/remik.v9i2.14712.
[20] E. Novalia, A. Voutama, and S. Susanto, “Sales System Using Apriori Algorithm to Analyze Consumer Purchase Patterns,” Buana Information Tchnology and Computer Sciences (BIT and CS) 22 |, vol. 3, no. 1, 2022.
[21] F. H. Desfianthy, S. Shofiah Hilabi, B. Priyatna, and E. Novalia, “PREDICTION OF POPULATION GROWTH IN KARAWANG CITY USING MULTIPLE LINEAR REGRESSION ALGORITHM METHOD,” 2024.
[22] D. Dwi Susilo, S. Shofiah Hilabi, B. Priyatna, and E. Novalia, “Implementasi Data Mining dalam Pengelompokan Data Pembelian Menggunakan Algoritma K-Means Pada PT.Otomotif 1”.
[23] T. Puspita Sari, A. Lia Hananto, E. Novalia, S. Shofia Hilabi, P. Studi Sistem Informasi, and U. Buana Perjuangan Karawang, “Implementasi Algoritma K-Means dalam Analisis Klasterisasi Penyebaran Penyakit Hiv/Aids,” Jurnal Informatika dan Teknologi, vol. 6, no. 1, 2023, doi: 10.29408/jit.v6i1.7423.