Classification of Non-Cash Food Aid Recipients Using the Decision Tree Method
Main Article Content
Abstract
Non-Cash Food Assistance is one of the government programs that has changed its name from the RASKIN or RASTRA program which is given to poor families every month by providing an electronic account to buy food at a seller that has been determined by the village government in collaboration with Bank Mandiri. The food assistance given to the beneficiary families is a form of government concern in accordance with the criteria determined by the Ministry of Social Affairs of the Republic Indonesia. The problem that often occurs in the Cipang Kiri Hulu Village Government was the difficulty in determining families who deserve to be given the non-cash food assistance in every year, so that it can cause messy and also protests from the people due to the large number of beneficiary families who are not on target. This study was conducted to classify families who receive the non-cash food assistance so that the results of this study can be used as a reference in making decisions whether appropriate or not to receive the non-cash food assistance in Cipang Kiri Hulu Village. The method that used was classification with the Decision Tree C4.5 Algorithm by using 14 attributes. The data used in this study was data from observations at the research location and interviews directly at the homes of families who received the non-cash food assistance in 2021 where there were 62 population data that have been presented in the csv file. The analysis of this study used the Rapid Miner Software version 9.5.001. The result of this research was to get 3 Rules. The rule was obtained from the final result of the decision tree's form.
Article Details
References
[2] Huda, N., Hasbi, M., Susyanto, T.(2021). Seleksi Penerimaan Bantuan Pangan Non Tunai di Desa Menggunakan Metode Naïve Bayes dan Simple Additive Weighting. Jurnal Ilmiah Sinus, 19(1),39-48. http:// doi.org/10.30646/sinus.v19i1.525
[3] Irmayansyah., & Firdaus, A. A. (2018). Penerapan Algoritma C4.5 Untuk Klasifikasi Penentuan Penerimaan Bantuan Langsung Di Desa Ciomas. Jurnal Ilmiah Teknologi - Informasi dan Sains (TeknoIS), 8(1), 17-28. http:// doi.org/10.36350/jbs.v8i1.18
[4] Oscario, Jasmir., Novianto, Y. (2019). Penerapan Algoritma C4.5 Untuk Memprediksi Kecocokan Gaya Belajar Bagi Siswa Siswi Sekolah Dasar (Studi Kasus : SD Sariputra Jambi). Jurnal STIKOM Dinamika Bangsa, 14(2), 141-152. http:// doi.org/10.33998/processor.2019.10.637
[5] Arianto, J. (2019). Penerapan Data Mining Untuk Mengelompokan Penduduk Kurang Mampu Desa Sambirejo Timur Dengan Algoritma K-Medoids (Studi Kasus Kantor Kepala Desa Sambirejo Timur). Konferensi Nasional Teknologi Informasi dan Komputer (KOMIK), 3(1), 569-573. http:// doi.org/10.30865/komik.v3i1.1660
[6] Wahyuni, S. (2018).Implementation of Data Mining to Analyze Drug Cases Using C4.5 Decision Tree. Journal of Physics : Conference Series, Electrical Engineering, Computer Science and Informatics (EECSI),1-6. http://doi.org/10.1088/1742-6596/970/1/012030
[7] Anggraini, S., Defit, S., Nurcahyo, G. N. (2018). Analisis Data Mining Penjualan Ban Menggunakan Algoritma C4.5. Jurnal Ilmu Teknik Elektro Komputer dan Informatika (JITEKI), 4(2), 136-143. http:// dex.doi.org/10.26555/jiteki.v4i2.11267
[8] Mellisa, I. ((2019). Building Data Mining Decision Tree Model for Predicting Employee Performance. Journal of Applied Information, Communication and Technology (JAICT). 6(2), 75-86. http://doi.org/10.33555/ejaict.v6i2.79
[9] Supangat., Amna, A.R., Titasari, R. (2018). Implementasi Decision Tree C4.5 Untuk Menentukan Status Berat Badan dan Kebutuhan Energi Anak Usia 7-12 Tahun.TEKNIKA, 7(2), e-ISSN 2549-8045, ISSN 2549-8037,73-78. http:// doi.org/10.34148/ teknika.v7i2.90
[10] Irawan, Y. (2021). Penerapan Algoritma Decision Tree C4.5 Untuk Prediksi Kelayakan Calon Pendonor Darah Dengan Klasifikasi Data Mining. Jurnal Teknologi Informasi dan Multimedia (JTIM), 2(4), 181-189. http:// doi.org/10.35746/jtim.v2i4.75
[11] Elfaladonna, F., & Rahmadani, A. (2019). Analisa Metode Classification-Decision Tree dan Algoritma C4.5 Untuk Memprediksi Penyakit Diabetes Dengan Menggunakan Aplikasi Rapid Miner. Science and Information Technologi (SINTECH) Journal, 2(1), 73-78. http:// doi.org/10.31598/sintechjournal.v2i1.293
[12] Asroni., Respati, B. M., Riyadi, S. (2018). Penerapan Algoritma C4.5 untuk Klasifikasi Jenis Pekerjaan Alumni di Universitas Muhammadiyah Yogyakarta. Jurnal Semesta Teknika, 21(2), 158-165. http://dx.doi.org/10.18196/st.212222
[13] Ginting, V. S., Kusrini., Taufiq. E. (2020). Implementasi Algoritma C4.5 Untuk Memprediksi Keterlambatan Pembayaran Sumbangan Pembangunan Pendidikan Sekolah Menggunakan Python. Jurnal Teknologi Informasi dan Komunikasi, 10(1), 36-44. http:// doi.org/10.35585/inspir.v10i1.2535
[14] Handrianto, Y., & Farhan, M. (2019). C.45 Algorithm for Classification of Causes of Landslides. Journal Publications & Informatics Engineering Reaseach, 4(1), 120-127. http:// doi.org/10.33395/sinkron.v4i1.10154
[15] Limantara, C., & Nababan, D. (2019). Klasifikasi Kepribadian Menggunakan Algoritma Decision Tree Berdasarkan Ten Item Personality Inventory. Jurnal CoreIT, 5(1), 8-12. http://dx.doi.org/10.18196/st.212222
[16] Rismayanti., Damayanti, F., Khairunnisa. (2018). Penerapan Data Mining Algoritma C4.5 dalam Menentukan Rekam Jejak Kinerja Dosen STT Harapan Medan. Jurnal & Penelitian Teknik Informatika, 3(1), 99-104. http:// doi.org/10.33395/sinkron.v3i1.173
[17] Fitriani, Y., Defit, S., Nurcahyo, G. W. (2021). Prediksi Hasil Belajar Siswa Secara Daring pada Masa Pandemi COVID-19 Menggunakan Metode C4.5. Jurnal Sistem Informasi dan Teknologi, 3(3), 118-125. http:// doi.org/ 10.37034/jsisfotek.v3i3.149
[18] Febriyanto, D. B., Handoko, L., Wahyuli., Aisyah, H., Rumini. (2018). Implementasi Algoritma C4.5 Untuk Klasifikasi Tingkat Kepuasan Pembeli Online Shop. Jurnal Riset Komputer (JURIKOM). 5(6), 569-575. http:// doi.org/ 10.30865/jurikom.v5i6.1000