Sistem Pakar dalam Mengidentifikasi Tingkat Keparahan Penyakit pada Tanaman Kelapa Sawit Menggunakan Framework Codeigniter

Main Article Content

Yunita Cahaya Khairani
Gunadi Widi Nurcahyo

Abstract

Palm oil is an industrial plant that produces oil (both cooking oil and fuel), soap and wax. One of the factors that can reduce the growth and productivity of oil palm is the presence of disease in the oil palm plant. In helping to identify and provide information about oil palm diseases, an Expert System was created to identify diseases in oil palm plants and their handling. The data that is processed in this research is knowledge about disease symptoms in oil palm plants which comes from an expert. The symptom data is processed using an expert system that has been designed and developed using the PHP Framework Codeigniter programming language and MySQL as the database. This system was successfully developed to identify the severity of the disease in oil palm plants and produce 100% accuracy. This system has been able to provide information to farmers about oil palm plant diseases and solutions to overcome them. This research is very suitable to be applied in identifying diseases in oil palm plants, so this research is suitable for use by oil palm farmers.

Article Details

How to Cite
Cahaya Khairani, Y., & Nurcahyo, G. W. (2021). Sistem Pakar dalam Mengidentifikasi Tingkat Keparahan Penyakit pada Tanaman Kelapa Sawit Menggunakan Framework Codeigniter. Jurnal Informasi Dan Teknologi, 3(1), 53-57. https://doi.org/10.37034/jidt.v3i1.113
Section
Articles

References

[1] Nababan, M., Laia, Y., Sitanggang, D., Sihombing, O., Indra, E., Siregar, S., Purba, W., & Mancur, R. (2018). The Diagnose of Oil Palm Disease Using Naive Bayes Method based on Expert System Technology. Journal of Physics: Conference Series. DOI: http://doi.org/10.1088/1742-6596/1007/1/012015
[2] Irawan, M. D., & Nasution, M. K. I. (2018). Rancang Bangun Sistem Pakar Mendiagnosa Penyakit Tanaman Kelapa Sawit Menggunakan Metode Bayes Berbasis Android (Studi Kasus: Perkebunan PTPN 4 Air Batu). Jurnal Teknologi Informasi, 2(1). DOI: http://doi.org/10.36294/jurti.v2i1.403 .
[3] Hariyanto, R., & Sa’diyah, K. (2018). Sistem Pakar Diagnosis Penyakit dan Hama Pada Tanaman Tebu Menggunakan Metode Certainty Factor. JOINTECS (Journal of Information Technology and Computer Science), 3(1), 29-32. DOI: https://doi.org/10.31328/jointecs.v3i1.500 .
[4] Geetha, G., & Prasad, K. M. (2020). Prediction of Diabetics using Machine Learning. IJRTE (International Journal of Recent Technology and Engineering), 8(5), 1119-1124. DOI: http://doi.org/10.35940/ijrte.E6290.018520 .
[5] Rawat, V., & Suryakant. (2019). A Classification System for Diabetic Patients with Machine Learning Techniques. IJMEMS (International Journal of Mathematical, Engineering and Management Sciences), 4(3), 729-744. DOI: https://dx.doi.org/10.33889/IJMEMS.2019.4.3-057 .
[6] Abdullah, D., Zarlis, M., Pardede, A. M. H., Anum, A., Suryani, R., Parwito., Hidayati, P. I., Susilo, E., Sofais, D. A. R., & Rosyidah, E. (2019). Expert System Diagnosing Disease of Honey Guava Using Bayes Method. In Journal of Physics: Conference Series, 1361(1). DOI: http://doi.org/10.1088/1742-6596/1361/1/012054 .
[7] Sudha, M., & Poorva, B. (2019). Predictive Tool for Dermatology Disease Diagnosis using Machine Learning Techniques. IJITEE (International Journal of Innovative Technology and Exploring Engineering), 8(9), 355-360. DOI: http://doi.org/10.35940/ijitee.G5376.078919 .
[8] Minarni, M., & Irawan, P. (2019). Implementasi Metode Naive Bayes Untuk Diagnosa Penyakit Lambung. Jurnal Teknoif Teknik Informatika, 7(2), 115-123. DOI: http://doi.org/10.21063/JTIF.2019.V7.2.115-123 .
[9] Putra, D. W. T., Utami, A. O., Minarni, M., & Swara, G. Y. (2019). Accuracy Level of Diagnosis of ENT Diseases in Expert System. Jurnal KomtekInfo, 6(2), 127-134.