Jurnal Informasi & Teknologi
Journal Content
Browse
  • By Issue
  • By Author
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
Atom logo
RSS2 logo
RSS1 logo
  • Submission
  • Author Guidelines
  • Review Process
  • License
  • Publication Fee
  • Cover
  • Access Statement
  • Publication Ethics

Template word

Similarity Checker

Cover Page

Statistik

Statistics Visitors


Flag Counter

  • Home
  • Current
  • Archive
  • Editorial Team
  • Reviewer
  • Contact
  • Announcement
  • Search
Home > Articles

Data Clusterization of Patient Medical Records for BPJS Kesehatan Service Users Using the K-Means Method

  • Jeri Wandana
    Universitas Putra Indonesia YPTK Padang

  • Sarjon Defit
    Universitas Putra Indonesia YPTK Padang

  • Sumijan Sumijan
    Universitas Putra Indonesia YPTK Padang


DOI: https://doi.org/10.37034/jidt.v2i4.73
Keywords: Medical Record, BPJS, Data Mining, K-Means, Cluster

Abstract

Patient histories who use the services of Badan Penyelenggara Jaminan Sosial (BPJS) Kesehatan are stored in medical record data. Each medical record data contains important information that is very valuable and can be processed to explore new knowledge using a data mining approach. This study aims to help Prof. Dr. Tabrani hospital in classifying patient data who use BPJS Kesehatan, so that the pattern of disease spread is known based on class of service. The data used is patient medical record data in 2019 from October to December, the data will be processed using the K-Means Clustering algorithm with a total of 3 clusters. In cluster 0 (H0) there are 3 patients who are dominated by A09.9 disease (Diarrhea / Dysentery) in Class 2 and Class 3, for cluster 1 (H1) there are 5 patients with more diverse types of disease, while for cluster 2 (H2) there are 5 patients who are predominantly K30 disease (Dyspepsia) in Class 1.

References

Sembiring, F., Octaviana, O., & Saepudin, S. (2020). Implementasi Metode K-Means dalam Pengklasteran Daerah Pungutan Liar di Kabupaten Sukabumi (Studi Kasus : Dinas Kependudukan dan Pencatatan Sipil). Jurnal Tekno Insentif, 14(1), 40-47. DOI: https://doi.org/10.36787/jti.v14i1.165 .

Purnama, J. J, Nurfalah, R., Rahayu, S., & Novitasari, H. B. (2019). Analisa Algoritma K-Means Clustering Pemetaan Jumlah Tindak Pidana. KLIK (Kumpulan Jurnal Ilmiah Komputer), 6(2), 128-142. DOI: http://dx.doi.org/10.20527/klik.v6i2.208 .

Ghofar, M. A., & Kurniawan, Y. I. (2018). Aplikasi Pengelompokan Pelanggan Pada UMS Store Menggunakan Algoritma K-Means. Jurnal Teknologi dan Manajemen Informatika, 4(1), 196-203. DOI: https://doi.org/10.26905/jtmi.v4i1.1772 .

Bastian, A. (2018). Penerapan Algoritma K-Means Clustering Analysis Pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka). Jurnal Sistem Informasi (Journal of Information System), 14(1), 28-34.

Maulida, L. (2018). Penerapan Data Mining dalam Mengelompokkan Kunjungan Wisatawan ke Objek Wisata Unggulan di Prov. DKI Jakarta dengan K-Means. JISKA (Jurnal Informatika Sunan Kalijaga), 2(3), 167-174. DOI: http://dx.doi.org/10.14421/jiska.2018.23-06 .

Asroni, Fitri, H., Prasetyo, E. (2018). Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus : Fakultas Kedokteran dan Ilmu Kesehatan dan Fakultas Ilmu Sosial dan Ilmu Politik). Jurnal Ilmiah Semesta Teknika, 21(1), 60–64. DOI: https://doi.org/10.18196/st.211211 .

Umar, R., Riadi, I., Miladiah, M. (2018). Sistem Identifikasi Keaslian Uang Kertas Rupiah Menggunakan Metode K-Means Clustering. Jurnal Teknologi Informasi, 17(2), 179–185. DOI: https://doi.org/10.33633/tc.v17i2.1681 .

Sukamto, S., Id, I. D., & Angraini, T. R. (2018). Penentuan Daerah Rawan Titik Api di Provinsi Riau Menggunakan Clustering Algoritma K-Means. JUITA (Jurnal Informatika), 6(2), 137–147. DOI: http://dx.doi.org/10.30595/juita.v6i2.3172 .

Aprianti, W., & Permadi, J. (2018). K-Means Clustering untuk Data Kecelakaan Lalu Lintas Jalan Raya di Kecamatan Pelaihari. (JTIIK) Jurnal Teknologi Informasi dan Ilmu Komputer, 5(5), 613–620. DOI: http://dx.doi.org/10.25126/jtiik.2018551113 .

Wiza, F. (2019). Klasterisasi Karakteristik Kekerasan Seksual Terhadap Anak dengan Metode K-Means Cluster Analysis. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 10(1), 44-53. DOI: https://doi.org/10.31849/digitalzone.v10i1.2423 .

Puntoriza, P., & Fibriani, C. (2020). Analisis Persebaran UMKM Kota Malang Menggunakan Cluster K-means. JOINS (Journal of Information System), 5(1), 86-94. DOI: https://doi.org/10.33633/joins.v5i1.3469 .

Am, A., Defit, S., & Sumijan, S. (2019). Penentuan Mutu Kelapa Sawit Menggunakan Metode K-Means Clustering. Jurnal KomtekInfo, 5(3), 1-9.

Salam, A., Adiatma, D., & Zeniarja, J. (2020). Implementasi Algoritma K-Means Dalam Pengklasteran untuk Rekomendasi Penerima Beasiswa PPA di UDINUS. JOINS (Journal of Information System), 5(1), 62-68. DOI: https://doi.org/10.33633/joins.v5i1.3350 .

Sarasvananda, I. B. G., Wardoyo, R., & Sari, A. K. (2019). The K-Means Clustering Algorithm With Semantic Similarity To Estimate The Cost of Hospitalization. IJCCS (Indonesian Journal of Computing and Cybernetics System). 13(4), 313-322. DOI: https://doi.org/10.22146/ijccs.45093 .

Annur, H. (2019). Penerapan Data Mining Menentukan Strategi Penjualan Variasi Mobil Menggunakan Metode K-Means Clustering. JTU (Jurnal Informatika Upgris). 5(1), 40-45. DOI: https://doi.org/10.26877/jiu.v5i1.3091 .

Hariyanto, M., & Shita, R. T. (2018). Clustering Pada Data Mining untuk Mengetahui Potensi Penyebaran Penyakit DBD Menggunakan Metode Algoritma K-Means dan Metode Perhitungan Jarak Euclidean Distance. SKANIKA (Sistem Komputer dan Teknik Informatika), 1(1), 117-122.

Nepal, B., Yamaha, M., Sahashi, H., & Yokoe, A. (2019). Analysis of Building Electricity Use Pattern Using K-Means Clustering Algorithm by Determination of Better Initial Centroids and Number of Clusters. Energies, 12(12), 1-17. DOI: https://doi.org/10.3390/en12122451 .

K-Means Advantages and Disadvantages [online] (diperbaharui 10 Februari 2020) https://developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages [Diakses 06 September 2020].

Download
Published
2020-12-31
Issue
2020, Vol. 2, No. 4
Section
Articles
How to Cite
Wandana, J., Defit, S., & Sumijan, S. (2020). Data Clusterization of Patient Medical Records for BPJS Kesehatan Service Users Using the K-Means Method. Jurnal Informasi Dan Teknologi, 2(4), 119-125. https://doi.org/10.37034/jidt.v2i4.73
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Copyright (c) 2020 Jurnal Informasi dan Teknologi

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.



Indexed:

Index Copernicus International (ICI) Google Scholar 

Registered:


Power by:
            

ISSN: 2714-9730 (electronic)
DOI: 10.37034/jidt
Publisher: Rektorat Universitas Putra Indonesia YPTK Padang

Kampus Universitas Putra Indonesia YPTK Padang
Jl. Raya Lubuk Begalung Padang, Sumatera Barat - 25221
Website : http://www.jidt.org | Email : jidt@upiyptk.ac.id