Klasifikasi Alexnet dan Deteksi Tepi Canny untuk Identifikasi Citra Repomedunm

Main Article Content

Dwiza Riana
Daniati Uki Eka Saputri
Sri Hadianti

Abstract

Deteksi dini kanker serviks dapat mencegah dan menunda kematian, salah satunya dengan memanfaatkan teknologi komputer untuk mendiagnosa berbagai jenis sel kanker serviks. Penelitian dilakukan terhadap citra Pap smear yang diambil dari RepomedUNM dengan tujuan mengklasifikasikan citra Pap smear menjadi dua kelas yaitu sel normal dan sel abnormal dengan menggunakan metode AlexNet. Proses awal klasifikasi citra terdiri dari mengubah ukuran dan mengubah citra asli menjadi skala abu-abu. Penelitian ini juga bertujuan untuk mendeteksi tepi citra pap smear yang terdiri dari dua kelas yaitu sel normal dan sel koilocyt. Deteksi tepi menggunakan metode Canny untuk mendapatkan nilai luas, keliling dan diameter sel sitoplasma dan inti sel (nukleus). Proses deteksi tepi Canny terdiri dari proses cropping, mengubah citra asli menjadi grayscale, dan segmentasi citra menggunakan metode thresholding. Hasil klasifikasi 2000 citra Pap smear menghasilkan akurasi sebesar 97,66% dan hasil deteksi tepi dari 50 citra Pap smear dengan metode Canny mampu memberikan hasil yang baik dengan mendeteksi tepi citra sebenarnya dan hasilnya.

Article Details

How to Cite
Riana, D., Uki Eka Saputri, D., & Hadianti, S. (2023). Klasifikasi Alexnet dan Deteksi Tepi Canny untuk Identifikasi Citra Repomedunm . Jurnal Informasi Dan Teknologi, 5(1), 191-198. https://doi.org/10.37034/jidt.v5i1.295
Section
Articles

References

[1] E. A. Osei and M. Ani-Amponsah, “Ghanaian women’s perception on cervical cancer threat, severity, and the screening benefits: A qualitative study at Shai Osudoku District, Ghana,” Public Heal. Pract., vol. 3, no. January, p. 100274, 2022, doi: 10.1016/j.puhip.2022.100274.
[2] D. S. P. D, “Knowledge And Practice Of Cervical Cancer Screening Among Women Visiting Specialist Hospital Jalingo , Taraba State,” vol. 05, no. 04, pp. 16–23, 2022.
[3] S. Nurjanah, B. T. Carolin, and N. H. Lail, “Factors Related to Women of Childbearing Age (WUS) Participation in Performing a Visual Inspection of Acetic Acid (IVA) Pamulang Health Center in 2022,” Nurs. Heal. Sci. J., vol. 2, no. 2, pp. 143–153, 2022, doi: 10.53713/nhs.v2i2.102.
[4] P. Yuniar, “Contextualizing policy implementation , challenges , and plans for improving breast cancer early detection programs in Indonesia,” pp. 1–37.
[5] W. T. Elgzar, M. A. Alshahrani, M. H. Nahari, and D. D. Al-, “Intention and self-efficacy for pap smear screening and Human Papilloma Virus vaccination among Saudi women at Najran city , KSA,” vol. 26, no. July, pp. 61–73, 2022, doi: 10.29063/ajrh2022/v26i7s.7.
[6] M. Moudatsou, P. Vouyiouka, E. Karagianni-Hatziskou, M. Rovithis, A. Stavropoulou, and S. Koukouli, “Knowledge and Use of Cervical Cancer Prevention Services among Social Work and Nursing University Students,” Healthc., vol. 10, no. 6, pp. 1–16, 2022, doi: 10.3390/healthcare10061140.
[7] P. B. Shanthi, K. S. Hareesha, and R. Kudva, “Automated Detection and Classification of Cervical Cancer Using Pap Smear Microscopic Images : A Comprehensive Review and Future Perspectives,” pp. 20–41, 2022.
[8] Z. Dlamini et al., “AI and precision oncology in clinical cancer genomics: From prevention to targeted cancer therapies-an outcomes based patient care,” Informatics Med. Unlocked, vol. 31, no. March, p. 100965, 2022, doi: 10.1016/j.imu.2022.100965.
[9] D. Riana, S. Hadianti, S. Rahayu, Frieyadie, and M. Hasan, “RepoMedUNM : A New Dataset for Extraction Feature and Train Deep Learning Network to Classify of Pap Smear Images,” in International Conference on Neural Information Processing (ICONIP 2021), 2021.
[10] D. Riana et al., “Identifikasi Citra Pap Smear RepoMedUNM dengan Menggunakan K-Means Clustering dan GLCM,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 1–8, 2022, doi: 10.29207/resti.v6i1.3495.
[11] M. M. Abdelsamea, U. Zidan, Z. Senousy, M. M. Gaber, E. Rakha, and M. Ilyas, “A survey on artificial intelligence in histopathology image analysis,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., no. June, pp. 1–44, 2022, doi: 10.1002/widm.1474.
[12] X. Geng, X. Liu, S. Cheng, and S. Zeng, “Cervical cytopathology image refocusing via multi-scale attention features and domain normalization,” Med. Image Anal., vol. 81, no. July 2021, 2022, doi: 10.1016/j.media.2022.102566.
[13] K. Hemalatha and K. U. Rani, “Feature Extraction of Cervical Pap Smear Images Using Fuzzy Edge Detection Method,” 2018, doi: 10.1007/978-981-10-3223-3.
[14] M. K. Soumya, K. Sneha, and C. Arunvinodh, “Cervical cancer detection and classification using texture analysis,” Biomed. Pharmacol. J., vol. 9, no. 2, pp. 663–671, 2016, doi: 10.13005/bpj/988.
[15] D. Riana, D. Ekashanti, O. Dewi, D. H. Widyantoro, and T. L. R. Mengko, “Segmentation and Area Measurement in Abnormal Pap Smear Images Using Color Canals Modification with Canny Edge Detection,” Int. Conf. Women’s Heal. Sci. Eng., pp. 1–4, 2012.
[16] D. Riana, D. E. O. Dewi, D. H. Widyantoro, and T. L. R. Mengko, “Color canals modification with canny edge detection and morphological reconstruction for cell nucleus segmentation and area measurement in normal Pap smear images,” AIP Conf. Proc., vol. 1589, no. Icmns 2012, pp. 414–417, 2014, doi: 10.1063/1.4868832.
[17] T. Xu et al., “RACNet: risk assessment Net of cervical lesions in colposcopic images,” Conn. Sci., vol. 34, no. 1, pp. 2139–2157, 2022, doi: 10.1080/09540091.2022.2085665.
[18] D. Riana, S. Hadianti, S. Rahayu, F. Aziz, Frieyadie, and O. Kalsoem, “Deeprepomedunm: a Train Deep Learning Network and Extraction Feature for the Classification of Pap Smear Images,” J. Theor. Appl. Inf. Technol., vol. 100, no. 19, pp. 5787–5800, 2022.
[19] D. Riana et al., “Repository Medical Imaging Citra Pap Smear,” 2021. .
[20] A. S. B. Karno, W. Hastomo, Y. Efendi, and D. R. I. Irawati, “Arsitektur Alexnet Convolution Neural Network (CNN) Untuk Mendeteksi Covid-19 Image Chest-Xray,” Konf. Nas. Ilmu Komput., pp. 482–485, 2021.
[21] H. Akbar and S. Sandfreni, “Klasifikasi Kanker Serviks Menggunakan Model Convolutional Neural Network (Alexnet),” JIKO (Jurnal Inform. dan Komputer), vol. 4, no. 1, pp. 44–51, 2021, doi: 10.33387/jiko.v4i1.2606.