Clustering and Modeling of E-Government Architecture Using the Algorithm C4.5
Main Article Content
Abstract
E-Government is a form of government service effort to present complete, easily accessible, updated and high-accuracy data to the public. Good Governance is the aspiration of the Pelalawan Regency Government so that the service becomes a government administration that prioritizes aspects of accountability, transparency and accountability. participatory, Assist in identification efforts and then become a solution to solving problems where so far the Pelalawan District Government programs are often not on target, data gaps and the dynamic nature of data from time to time. This is caused by the large number of information systems facilitated by Ministries, Agencies and other Institutions for use by Regional Apparatus Organizations that are not relevant to the variables and data criteria that are suitable to be applied to Pelalawan Regency, considering the data that has been processed so far is very large and large. Solution Method C4.5 can assist in identification efforts and then become a problem solving solution where so far the Pelalawan District Government program is often not right on target, data gaps and the dynamic nature of data from time to time. The data used in this study are 3 information systems facilitated by the Ministry of Social Affairs, Visualization and Analysis, a collection of data with different and growing formats is then clustered using the C.45 method by carrying out the Big Data principles, namely volume, velocity, variety, varicity and value. This research will later become input to the Regional Government in determining decisions on the implementation of assistance to the poor which refers to the indicators from this data mining.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[2] Subroto, G., Sulistiyowati, N., & Ridha, A. A. (2022). Klasifikasi Jenis Kekerasan Pada Perempuan Dan Anak Dengan Algoritma Multinomial Naïve Bayes. INTECOMS: Journal of Information Technology and Computer Science, 5(1), 104-113. https://doi.org/10.31539/intecoms.v5i1.3598
[3] Dewi, S., Defit, S., & Yuhandri, Y. (2021). Akurasi Pemetaan Kelompok Belajar Siswa Menuju Prestasi Menggunakan Metode K-Means. Jurnal Sistim Informasi dan Teknologi, 28-33. https://doi.org/10.37034/jsisfotek.v3i1.40
[4] Lestari, Y. I. (2021). Prediksi Tingkat Kepuasan Pelayanan Online Menggunakan Metode Algoritma C. 45. Jurnal Informatika Ekonomi Bisnis, 148-154. https://doi.org/10.37034/infeb.v3i4.104
[5] Umam, K., Puspitasari, D., & Nurhadi, A. (2020). Penerapan Algoritma C4. 5 Untuk Prediksi Loyalitas Nasabah PT Erdika Elit Jakarta. Jurnal Media Informatika Budidarma, 4(1), 65-71. http://dx.doi.org/10.30865/mib.v4i1.1652
[6] Gaol, N. Y. L. (2020). Prediksi Mahasiswa Berpotensi Non Aktif Menggunakan Data Mining dalam Decision Tree dan Algoritma C4. 5. Jurnal Informasi dan Teknologi, 23-29. https://doi.org/10.37034/jidt.v2i1.22
[7] Hana, F. M. (2020). Klasifikasi Penderita Penyakit Diabetes Menggunakan Algoritma Decision Tree C4. 5. Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan), 4(1), 32-39.
https://doi.org/10.47970/siskom-kb.v4i1.173
[8] Rintiasti, A., & Fauzi, R. Data Mining Parameter Syarat Tumbuh Optimal Lahan Perkebunan untuk Rule Sistem Pakar Menggunakan Metode C45 dan Forward Chaining. Indonesian Journal of Industrial Research, 13(2), 95-105. 10.33104/jihp.v13i2.4139
[9] Matondang, M. R., Lubis, M. R., & Tambunan, H. S. (2021). Analisis Data mining dengan Metode C. 45 pada Klasifikasi Kenaikan Rata-Rata Volume Perikanan Tangkap. Brahmana: Jurnal Penerapan Kecerdasan Buatan, 2(2), 74-81. https://doi.org/10.30645/brahmana.v2i2.68
[10] Hana, F. M. (2020). Klasifikasi Penderita Penyakit Diabetes Menggunakan Algoritma Decision Tree C4. 5. Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan), 4(1), 32-39.
https://doi.org/10.47970/siskom-kb.v4i1.173
[11] Primajaya, A., Sari, B. N., & Khusaeri, A. (2020). Prediksi Potensi Kebakaran Hutan dengan Algoritma Klasifikasi C4. 5 Studi Kasus Provinsi Kalimantan Barat. JEPIN (Jurnal Edukasi dan Penelitian Informatika), 6(2), 188-192.
http://dx.doi.org/10.26418/jp.v6i2.37834
[12] Mara, A. T., Sediyono, E., & Purnomo, H. (2021). Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Metode Pembelajaran Dalam Jaringan (DARING) Di Universitas Kristen Wira Wacana Sumba. Jointer-Journal of Informatics Engineering, 2(01), 24-31.
https://doi.org/10.53682/jointer.v2i01.30
[13] Sudarsono, B. G., & Lestari, S. P. (2021). Clustering Penerima Beasiswa Yayasan Untuk Mahasiswa Menggunakan Metode K-Means. Jurnal Media Informatika Budidarma, 5(1), 258-263. http://dx.doi.org/10.30865/mib.v5i1.2670
[14] Harahap, F. (2021). Perbandingan Algoritma K Means dan K Medoids Untuk Clustering Kelas Siswa Tunagrahita. TIN: Terapan Informatika Nusantara, 2(4), 191-197.
https://ejurnal.seminar-id.com/index.php/tin
[15] Setio, P. B. N., Saputro, D. R. S., & Winarno, B. (2020, February). Klasifikasi Dengan Pohon Keputusan Berbasis Algoritme C4. 5. In PRISMA, Prosiding Seminar Nasional Matematika (Vol. 3, pp. 64-71).
[16] Windarto, A. P., Irawan, E., Saputra, W., & Okprana, H. (2020, July). Penerapan Data Mining Menggunakan Algoritma C4. 5 Dalam Mengukur Tingkat Kepuasan Pasien BPJS. In Prosiding Seminar Nasional Riset Information Science (SENARIS) (Vol. 2, pp. 376-385).
http://dx.doi.org/10.30645/senaris.v2i0.185
[17] Maulana, Y., Winanjaya, R., & Rizki, F. (2022). Penerapan Data Mining dengan Algoritma C. 45 Dalam Memprediksi Penjualan Tempe. Bulletin of Computer Science Research, 2(2), 53-58
https://doi.org/10.47970/siskom-kb.v4i1.173
[18] Zai, C. (2022). Implementasi Data Mining Sebagai Pengolahan Data. Jurnal Portal Data, 2(3).
https://doi.org/10.22437/jkam.v2i1.5430
[19] Ordila, R., Wahyuni, R., Irawan, Y., & Sari, M. Y. (2020). Penerapan Data Mining Untuk Pengelompokan Data Rekam Medis Pasien Berdasarkan Jenis Penyakit Dengan Algoritma Clustering (Studi Kasus: Poli Klinik Pt. Inecda). Jurnal Ilmu Komputer, 9(2), 148-153.
https://doi.org/10.33060/JIK/2020/Vol9.Iss2.181
[20] Desyanti, D. (2021). Implementasi Metode C. 45 dalam Menganalisa Tingkat Kecemasan Mahasiswa Menyusun Tugas Akhir. JURNAL UNITEK, 14(1), 17-29.
https://doi.org/10.52072/unitek.v14i1.175