Metode Monte Carlo dalam Memprediksi Produksi Es Balok terhadap Optimalisasi Kebutuhan

  • Muhammad Habib Yuhandri
    Independent Researcher


Keywords: Optimization, Ice Cube, Prediction, Production, Monte Carlo

Abstract

The simulation in predicting the production of Ice Cube is an estimate of the calculation of the production level of Ice Cube. This simulation can predict the production of Ice Cube to meet customer demand in the future compared to just guessing. PT. Fisheries Indonesia is a state-owned company and one of its branches is in Padang City which is specifically for producing Ice Cube to meet the needs of the West Sumatra area. The purpose of this study is to predict the production of Ice Cube which is useful for knowing the next production so that it can increase efficiency in terms of cost and time and can also optimize needs. The data used in this study is Ice Cube production data in 2019 and 2021 which is processed using the Monte Carlo method. The Monte Carlo method is a numerical method that is described as a statistical simulation method, which will calculate the production frequency, then calculate the probability distribution and cumulative probability then calculate the range of values, after that a simulation is carried out using a number of random variables. The results of the simulations that have been carried out in predicting the production of Ice Cube obtained an accuracy rate of 85% for 2019 and 90% for 2020. Based on the results of the research conducted, it is hoped that it will make it easier for PT Fisheries Indonesia Padang Branch to determine the amount of Ice Cube production.

References

[1] Alimuddin, A. (2020). Etika Produksi Dalam Pandangan Maqasid Syariah. Nizham Journal of Islamic Studies, 8(01), 113-124.Na`am, J., Harlan, J., Madenda, S., & Wibowo, E. P. (2016). Identification of the Proximal Caries of Dental X-Ray Image with Multiple Morphology Gradient Method. International Journal on Advanced Science, Engineering and Information Technology (IJASEIT), 6(3), 343-346. DOI: http://dx.doi.org/10.18517/ijaseit.6.3.827
[2] Santony, J. (2020). Simulasi penjadwalan proyek pembangunan jembatan gantung dengan metode Monte Carlo. Jurnal Informasi dan Teknologi, 30-35. DOI: https://doi.org/10.37034/jidt.v2i1.34
[3] Effendi, M. R. (2021). Penerapan Metode Montecarlo Untuk Gerak Pengontrolan Robot Berbasis Random Walks. JSI (Jurnal sistem Informasi) Universitas Suryadarma, 8(1), 223-234. DOI: https://doi.org/10.35968/jsi.v8i1.619
[4] Anggraini, S. D., & Nurcahyo, G. W. (2021). Prediksi Peningkatan Jumlah Pelanggan dengan Simulasi Monte Carlo. Jurnal Informatika Ekonomi Bisnis, 95-100. DOI: https://doi.org/10.35968/jsi.v8i1.619
[5] Prawita, R. (2021). Simulasi Metode Monte Carlo dalam Menjaga Persediaan Alat Tulis Kantor. Jurnal Informatika Ekonomi Bisnis, 72-77. DOI: https://doi.org/10.37034/infeb.v3i2.69
[6] Santony, J., & Yunus, Y. (2019). Simulasi Monte Carlo untuk Memprediksi Hasil Ujian Nasional (Studi Kasus di SMKN 2 Pekanbaru). Jurnal Informasi Dan Teknologi, 1-6. DOI: https://doi.org/10.37034/jidt.v1i4.21
[7] Apri, M., Aldo, D., & Hariselmi, H. (2019). Simulasi Monte Carlo untuk Memprediksi Jumlah Kunjungan Pasien. JURSIMA (Jurnal Sistem Informasi Dan Manajemen), 7(2), 92-106. DOI: https://doi.org/10.47024/js.v7i2.176
[8] Zalmadani, H., Santony, J., & Yunus, Y. (2020). Prediksi Optimal dalam Produksi Bata Merah Menggunakan Metode Monte Carlo. Jurnal Informatika Ekonomi Bisnis, 13-20. DOI: https://doi.org/10.37034/infeb.v2i1.11
[9] Darnis, R., Nurcahyo, G. W., & Yunus, Y. (2020). Simulasi Monte Carlo untuk Memprediksi Persediaan Darah. Jurnal Informasi Dan Teknologi, 139-144. DOI: https://doi.org/10.37034/jidt.v2i4.98
[10] Na`am, J. (2017). Edge Detection on Objects of Medical Image with Enhancement multiple Morphological Gradient (EmMG) Method. 4th Proc. EECSI. 23-24 Sep. 2017. Yogyakarta: Indonesia. http://dx.doi.org/10.1109/EECSI.2017.8239085
Published
2022-12-31
Section
Articles
How to Cite
Yuhandri, M. H. (2022). Metode Monte Carlo dalam Memprediksi Produksi Es Balok terhadap Optimalisasi Kebutuhan . Jurnal Informasi Dan Teknologi, 4(4), 204-210. https://doi.org/10.37034/jidt.v4i4.223