Sistem Pakar Menggunakan Forward Chaining dalam Mendeteksi Tingkat Keparahan Skizofrenia

  • Mirantie Prima Surya
    Independent Researcher

Keywords: Expert System, Forwatd Chaining, Schizophrenia, Disease, Psyche


The Basic Health Research Research (Riskesdas) in 2018 showed the prevalence of Schizophrenia in Indonesia was 7% per 1,000 households. The coverage of the indicator for Mentally Impaired Patients Getting Treatment and Not Abandoned (PGJMPTD) nationally is 38.14%, and West Sumatra Province for the same indicator with 45.58% is in the top fourth province with a score of 45.58%. This study aims to build an appropriate system for Schizophrenia indicators. The system built in the form of an Expert System. Expert systems are the ability of computers to convert knowledge from humans into computers and can help overcome problems that can only be solved by experts. An expert system for detecting the severity of Schizophrenia is a system that adopts the knowledge of a psychiatrist in determining the severity of Schizophrenia in a psychiatric patient. This expert system is made using the Forward Chaining method. The purpose of this Expert System is to prove that the Forward Chaining method can be implemented in making this Expert System. In addition, the Expert System can provide benefits to assist a Psychiatrist in conducting tests to determine the severity of Schizophrenia patients. The data used in this study were 20 medical records of patients, in the form of symptoms of the disease and data on patient diagnosis by a Psychiatrist Specialist. Furthermore, the data is processed using the Inference Forward Chaining method and presented in the form of an application using the PHP programming language. The results of this study are 18 valid data and 2 invalid data so that an accuracy value of 90% is obtained. The Expert System with the Forward Chaining method is suitable and can be used to detect the severity of Schizophrenia.


[1] Voppel, A. E., de Boer, J. N., Brederoo, S. G., Schnack, H. G., & Sommer, I. E. C. (2021). Quantified language connectedness in schizophrenia-spectrum disorders. Psychiatry Research, 304, 114130. DOI:
[2] Kemenkes, R. I. (2018). Laporan hasil riset kesehatan dasar (riskesdas) Indonesia tahun 2018. Riset Kesehatan Dasar, 2018, 182-183. Available at:
[3] Ciompi, L., & Tschacher, W. (2021). Affect-logic, embodiment, synergetics, and the free energy principle: new approaches to the understanding and treatment of schizophrenia. Entropy, 23(12), 1619. DOI:
[4] Martinotti, G., De Risio, L., Vannini, C., Schifano, F., Pettorruso, M., & Di Giannantonio, M. (2021). Substance-related exogenous psychosis: a postmodern syndrome. CNS spectrums, 26(1), 84-91. DOI:
[5] Moffa, G., Kuipers, J., Carrà, G., Crocamo, C., Kuipers, E., Angermeyer, M., ... & Bebbington, P. (2021). Longitudinal symptomatic interactions in long-standing schizophrenia: a novel five-point analysis based on directed acyclic graphs. Psychological Medicine, 1-8. DOI:
[7] Syme, K. L., & Hagen, E. H. (2020). Mental health is biological health: Why tackling “diseases of the mind” is an imperative for biological anthropology in the 21st century. American Journal of Physical Anthropology, 171, 87-117. DOI:
[8] Sunarti, S., Rahman, F. F., Naufal, M., Risky, M., Febriyanto, K., & Masnina, R. (2021). Artificial intelligence in healthcare: opportunities and risk for future. Gaceta Sanitaria, 35, S67-S70. DOI:
[9] Samuel, J., Kashyap, R., Samuel, Y., & Pelaez, A. (2022). Adaptive cognitive fit: Artificial intelligence augmented management of information facets and representations. International journal of information management, 65, 102505. DOI:
[10] Holzinger, A., Dehmer, M., Emmert-Streib, F., Cucchiara, R., Augenstein, I., Del Ser, J., ... & Díaz-Rodríguez, N. (2022). Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence. Information Fusion, 79, 263-278. DOI:
[11] Dewi, A. O. P. (2020). Kecerdasan Buatan sebagai Konsep Baru pada Perpustakaan. Anuva: Jurnal Kajian Budaya, Perpustakaan, dan Informasi, 4(4), 453-460. DOI:
[12] Putra, R. S., & Yuhandri, Y. (2021). Sistem Pakar dalam Menganalisis Gangguan Jiwa Menggunakan Metode Certainty Factor. Jurnal Sistim Informasi dan Teknologi, 227-232. DOI:
[13] Tong, W., & Li, G. Y. (2022). Nine challenges in artificial intelligence and wireless communications for 6G. IEEE Wireless Communications. DOI:
[14] Zhang, C., & Lu, Y. (2021). Study on artificial intelligence: The state of the art and future prospects. Journal of Industrial Information Integration, 23, 100224. DOI:
[15] Yang, N., Yang, C., Wu, L., Shen, X., Jia, J., Li, Z., ... & Liu, S. (2021). Intelligent Data-Driven Decision-Making Method for Dynamic Multisequence: An E-Seq2Seq-Based SCUC Expert System. IEEE Transactions on Industrial Informatics, 18(5), 3126-3137. DOI:
[16] Casal-Guisande, M., Comesaña-Campos, A., Pereira, A., Bouza-Rodríguez, J. B., & Cerqueiro-Pequeño, J. (2022). A decision-making methodology based on expert systems applied to machining tools condition monitoring. Mathematics, 10(3), 520. DOI:
[17] Kapsalis, P., Kormpakis, G., Alexakis, K., & Askounis, D. (2022). Leveraging Graph Analytics for Energy Efficiency Certificates. Energies, 15(4), 1500. DOI:
[18] Ravi, M., Negi, A., & Chitnis, S. (2022, April). A Comparative Review of Expert Systems, Recommender Systems, and Explainable AI. In 2022 IEEE 7th International conference for Convergence in Technology (I2CT) (pp. 1-8). IEEE. DOI:
[19] Syaripudin, A. (2022). SISTEM PAKAR SISTEM PAKAR DENGAN METODE FORWARD CHAINING UNTUK DIAGNOSA GEJALA COVID-19. OKTAL: Jurnal Ilmu Komputer dan Sains, 1(05), 531-540. DOI:
[20] Suci, K. W., Sutomo, B., & Syaputra, A. (2021). PENENTUAN PASIEN KEMOTERAPI DENGAN MENGGUNAKAN METODE FORWARD CHAINING. Journal Computer Science and Informatic Systems: J-Cosys, 1(2), 62-72. DOI:
[21] Yansyah, I. R., & Sumijan, S. (2021). Sistem Pakar Metode Forward Chaining untuk Mengukur Keparahan Penyakit Gigi dan Mulut. Jurnal Sistim Informasi dan Teknologi, 41-47. DOI:
[22] Salotagi, S., & Mallapur, J. D. (2022, February). Optimization of Multicast Routing Using Forward Chain Algorithm for Internet of Things Application (IoT) Agriculture Application. In 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT) (pp. 1-5). IEEE. DOI:
[23] Kurniawan, J., Defit, S., & Yuhandri, Y. (2021). Sistem Pakar dalam Mengidentifikasi Minat Vokasi Menggunakan Metode Certainty Factor dan Forward Chaining. Jurnal Sistim Informasi dan Teknologi, 76-81. DOI:
[24] Putra, R. S., & Yuhandri, Y. (2021). Sistem Pakar dalam Menganalisis Gangguan Jiwa Menggunakan Metode Certainty Factor. Jurnal Sistim Informasi dan Teknologi, 227-232. DOI:
[25] Pratama, I. P. A. E. (2021). Self-Diagnosis of Web-Based Pregnancy and Childbirth Disorders Using Forward Chaining Methods. International Journal of Advances in Data and Information Systems, 2(1), 25-35. DOI:
[26] Paryati, P., & Krit, S. (2022). Expert System for Early Detection and Diagnosis of Central Nervous Diseases in Humans with Forward Chaining and Backward Chaining Methods Using Interactive Multimedia. In ITM Web of Conferences (Vol. 43, p. 01016). EDP Sciences. DOI:
How to Cite
Surya, M. P. (2022). Sistem Pakar Menggunakan Forward Chaining dalam Mendeteksi Tingkat Keparahan Skizofrenia. Jurnal Informasi Dan Teknologi, 4(4), 198-203.