Accuracy in Identifying Similarity Levels in Scientific Articles Using the Jaro Winkler Algorithm

Main Article Content

Firman Santosa

Abstract

Plagiarism is an issue that often develops and always occurs, especially in universities. STKIP Rokania already has a scientific article recording system called E-Jurnal which is always used by lecturers to publish journals and search for relevant topics and literature. In making scientific articles, plagiarism is often not detected in scientific articles submitted by lecturers. This fraud is carried out by combining the available abstracts to form one abstract resulting from the merger. This means that the abstract is not the result made by the researcher himself. The biggest problem is when this fraudulent act is not detected, which is due to manual checking of documents. This of course can result in lowering the reputation of the accredited E-Journal. Of course, this problem must be immediately given the right solution to identify the level of similarity in scientific articles that already exist. Identification of the level of similarity in scientific articles is made through a structured development stage using the Jaro Winkler algorithm which is chosen to detect the similarity of abstract documents of scientific articles with abstracts that have been stored in the E-Jurnal database. The system will display the percentage level of similarity of the abstract of the scientific article so that the journal admin makes the right decision when accepting the scientific article or rejecting it. Through this research, lecturers can do an initial check of abstracts from prospective scientific articles to minimize plagiarism. Thus, it can minimize the actions of lecturers' fraud in making scientific articles and produce high-quality journals of higher value.

Article Details

How to Cite
Santosa, F. (2022). Accuracy in Identifying Similarity Levels in Scientific Articles Using the Jaro Winkler Algorithm. Jurnal Informasi Dan Teknologi, 4(3), 142-147. https://doi.org/10.37034/jidt.v4i3.217
Section
Articles

References

Nurdin, N., Rizal, R., & Rizwan, R. (2019). Pendeteksian Dokumen Plagiarisme dengan Menggunakan Metode Weight Tree. Telematika, 12(1), 31. https://doi.org/10.35671/telematika.v12i1.775
Swari, M. H. P., Putra, C. A., & Handika, I. P. S. (2021). Plagiarsm Checker pada Sistem Manajemen Data Tugas Akhir. Jurnal Sains dan Informatika, 7(2), 192–201. https://doi.org/10.34128/jsi.v7i2.338
Rouf, H. A., Wijayanto, A., & Aziz, A. (2020). Deteksi Plagiarisme Skripsi Mahasiswa dengan Metode Single-link Clustering dan Jaro-Winkler Distance. JURNAL PILAR TEKNOLOGI: Jurnal Ilmiah Ilmu Ilmu Teknik, 5(1), 26–31. https://doi.org/10.33319/piltek.v5i1.50
Vatolin, A. S., Smirnova, E. Y., & Shkarin, S. S. (2021). Russian News Similarity Detection with SBERT: Pre-training and fine-tuning. Komp’juternaja Lingvistika i Intellektual’nye Tehnologii, 2021-June(20), 692–697. https://doi.org/10.28995/2075-7182-2021-20-692-697
Yulianto, M. A., & Nurhasanah, N. (2021). The Hybrid of Jaro-Winkler and Rabin-Karp Algorithm in Detecting Indonesian Text Similarity. Jurnal Online Informatika, 6(1), 88. https://doi.org/10.15575/join.v6i1.640
Syaharuddin, S., Mandailina, V., Saddam, S., Perwira Negara, H. R., Satriawan, R., & Ibrahim, M. (2021). Minimalisasi Tingkat Plagiat Karya Ilmiah Mahasiswa Melalui Workshop Software Plagiarism Checker X. Bakti Cendana, 4(1), 62–67. https://doi.org/10.32938/bc.v4i1.902
Severin, A., Strinzel, M., Egger, M., Domingo, M., & Barros, T. (2021). Characteristics of scholars who review for predatory and legitimate journals: Linkage study of Cabells Scholarly Analytics and Publons data. BMJ Open, 11(7). https://doi.org/10.1136/bmjopen-2021-050270
Zahroh, F., & Wahyudin, N. (2020). Peran Open Access Institusional Repository ( Oair ) Dalam Mengurangi Tingkat Plagiarisme Pada Karya. BIBLIOTIKA : Jurnal Kajian Perpustakaan dan Informasi, 4(1), 121–129. http://journal2.um.ac.id/index.php/bibliotika%0APERAN
Nashihuddin, W. (2020). Mediatisasi Kebijakan Penerbitan E-Journal dengan Open Journal System di Indonesia. Jurnal Ilmu Perpustakaan dan Informasi, 4(1). https://doi.org/10.29240/tik.v4i1.1176
Rosalia, R., & Fuad, A. J. (2019). Peran dosen dalam meminimalisasi perilaku plagiasi mahasiswa. Indonesian Journal of Islamic Education Studies (IJIES), 2(1), 61-77. https://doi.org/10.33367/ijies.v2i1.882
Wulandari, D., Indriati, & Dewi, C. (2019). Analisis Sentimen p ada Ulasan “Lazada” Berbahasa Indonesia Menggunakan BM25 dan K-Nearest Neighbor (K-NN) dengan Perbaikan. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(5), 5017–5023.
Khairunnisa, S., Adiwijaya, A., & Al Faraby, S. (2021). Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19). Jurnal Media Informatika Budidarma, 5(2), 406-414. http://dx.doi.org/10.30865/mib.v5i2.2835
Agustina, D. A., Subanti, S., & Zukhronah, E. (2021). Implementasi Text Mining Pada Analisis Sentimen Pengguna Twitter Terhadap Marketplace di Indonesia Menggunakan Algoritma Support Vector Machine. Indonesian Journal of Applied Statistics, 3(2), 109-122. https://doi.org/10.13057/ijas.v3i2.44337
Hanani, H. N., Jayadianti, H., & Rustamaji, H. C. (2021). Fuzzy String Matching for Semi-Automatication of Words with Jaro Winkler Distance Algorithm on Microsoft Word Documents. Seminar Nasional Informatika (SEMNASIF), 18(1), 1–10. http://jurnal.upnyk.ac.id/index.php/semnasif/article/view/6067
Hickman, L., Thapa, S., Tay, L., Cao, M., & Srinivasan, P. (2022). Text preprocessing for text mining in organizational research: Review and recommendations. Organizational Research Methods, 25(1), 114-146. https://doi.org/10.1177/1094428120971683
Nofiyani, N., & Wulandari, W. (2022). Implementasi Electronic Data Processing Untuk meningkatkan Efektifitas dan Efisiensi Pada Text Mining. JURNAL MEDIA INFORMATIKA BUDIDARMA, 6(3), 1621-1629. http://dx.doi.org/10.30865/mib.v6i3.4332
Rozi, I. F., & Putri, I. K. (2022). Peringkasan Teks Otomatis pada Portal Berita Olahraga menggunakan metode Maximum Marginal Relevance. Jurnal Informatika Polinema, 8(3), 21-30. https://doi.org/10.33795/jip.v8i3.519
Dalimunthe, K., & Hayadi, B. H. (2022). Information Text Retrieval Untuk Pencarian Data Penilaian Mengacu Pada Saran Dari Pengunjung Menggunakan Vector Space Modelimplementasi. Journal Computer Science and Information Technology (JCoInT), 3(2), 73-79. http://jurnal.ulb.ac.id/index.php/JCoInT/index
Ikasari, D., & Widiastuti, W. (2021, January). Sentiment Analysis Review Novel “Goodreads” Berbahasa Indonesia Menggunakan Naïve Bayes Classifier. In Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi) (Vol. 5, No. 1). https://doi.org/10.30998/semnasristek.v5i1.5040
Sanjaya, A. (2020). Optimasi Pencarian Data Menggunakan Text Filtering dan Algoritma Jaro Winkler. Network Engineering Research Operation, 5(1), 24-29. http://dx.doi.org/10.21107/nero.v5i1.149