Pengelompokan Daerah Rawan Demam Berdarah Dengan Metode K-Means Clustering

  • Sri Handani Widiastuti
    Sekolah Tinggi Teknologi Bontang

  • Rio Jumardi
    Sekolah Tinggi Teknologi Bontang


Abstract

The Dengue fever is a disease found in tropical and subtropical regions that is transmitted through the bite of the Aedes aegypti mosquito. Dengue fever is still a serious problem for public health in the city of Bontang. For that we need a system that can classify the areas of spread of dengue fever in the city of Bontang. The K-Means Clustering algorithm is a non-hierarchical data clustering algorithm that partitions data into one or more clusters or groups so that data with the same characteristics are grouped into the same cluster. To classify areas in the city of Bontang into three clusters, namely Sporadic, Potential, and Endemic. Three villages were selected as the centroid of each cluster, Bontang Kuala as the centroid of the sporadic cluster, Telihan as the centroid of the potential cluster, and Tanjung Laut as the centroid of the Endemic cluster. Village data, cluster data, and centroid data are processed using the K-Means Clustering algorithm, and application testing using Black Box Testing. The results of the application using the clustering method obtained information that there were five villages for sporadic clusters, five villages for potential clusters, and five villages for endemic clusters from a total of 15 villages used as samples for environmental health by the Bontang City Health Service.

References

[1] M. Z. Akbar, “Waspada, Bahaya DBD Masih Mengintai,” 2019. [Online]. https://bontangpost.id/64642-waspada-bahaya-dbd-masih-mengintai/
[2] E. Prasetyo, Data Mining, Konsep dan Aplikasi Menggunakan MATLAB. Yogyakarta: ANDI, 2012.
[3] R. Fidayanto, H. Susanto, A. Yohanan, and R. Yudhastuti, “Model Pengendalian Demam Berdarah Dengue,” J. Kesehat. Masy. Nas., vol. 7, no. 11, pp. 522–528, 2013.
[4] Kemenkes RI, Petunjuk Teknis Implementasi PSN 3M Plus Dengan Gerakan 1 Rumah 1 Jumantik. .
[5] Widoyono, Penyakit Tropis (epidomolgi, penularan, pencegahan dan pemberantasan). Jakarta: Erlangga, 2008.
[6] J. O. Ong, “Implementasi Algotritma K-means clustering untuk menentukan strategi marketing president university,” J. Ilm. Tek. Ind., vol. vol.12, no, no. juni, pp. 10–20, 2013.
[7] B. Venkateswarlu and P. R. G.S.V, “Mine Blood Donors Information through Improved K-Means Clustering,” Int. J. Comput. Sci. Inf. Technol., vol. 1, no. 3, pp. 9–15, 2013, doi: 10.5121/ijcsity.2013.1302.
[8] F. A. Hermawati, Data Mining. Yogyakarta: ANDI, 2013.
[9] J. Han, M. Kamber, and J. Pei, Data mining: Concepts and Techniques. Elsevier, 2011.
[10] V. Kotu and B. Deshpande, Predictive Analytics and Data Mining: Concepts and Practice with RapidMiner. Morgan Kauffman, 2014.
[11] N. Soni and A. Ganatra, “Categorization of Several Clustering Algorithms from Different Perspective: A Review,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 2, no. 8, p. 2277, 2012.
[12] A. Singla and M. Karambir, “Comparative Analysis & Evaluation of Euclidean Distance Function and Manhattan Distance Function Using KMeans Algorithm,” Int. J., 2012.
[13] J. Pal and V. Bhattacherjee, “Fuzzy rule based classifier for software quality data,” J. Theor. Appl. Inf. Technol., vol. 72, no. 1, pp. 58–66, 2015.
[14] R. M. S. An Ni’Mah, “Sistem Informasi Geografis Visualisasi Clustering Penyakit ISPA di Kecamatan Kaliwungu,” pp. 5–6, 2014.
[15] W. Ragil, Pedoman Sosialisasi Prosedur Operasi Standar. Jakarta: Mitra Wacana Media, 2010.
[16] Z. Ilka, “Pemodelan Berbasis UML (Unified Modeling Language) dengan Strategi Teknik Orientasi User Centered Design (UCD) dalam Sistem Administrasi Pendidikan,” Univ. Islam Negeri Sumatra Utara Medan, no. January 2013, 2013.
[17] W. N. Cholifah, Y. Yulianingsih, and S. M. Sagita, “Pengujian Black Box Testing pada Aplikasi Action & Strategy Berbasis Android dengan Teknologi Phonegap,” Satuan Tulisan Ris. dan Inov. Teknol., vol. 3, no. 2, p. 206, 2018, doi: 10.30998/string.v3i2.3048.
[18] B. Sidik, Pemrograman Web dengan PHP Revisi Kedua. Bandung: Informatika, 2014.
[19] K. Ardila, Rifani; Desi, Purwanti, “Implementasi Algoritma K-means untuk Clustering penyakit HIV/AIDS di Kabupaten Semarang,” 2016.
[20] A. Bastian, H. Sujadi, and G. Febrianto, “Penerapan Algoritma K-Means Clustering Analysis Pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka),” no. 1, pp. 26–32.
[21] T. A. Kurniawan, A. Lubis, A. Ihfandi, U. Satya, and N. Indonesia, “Implementasi Data Mining Untuk Prediksi Daerah Rawan Penyakit Demam Berdarah Menggunakan Algoritma C45,” vol. 3, no. 2, pp. 50–58, 2018
Published
2022-12-31
Section
Articles
How to Cite
Widiastuti, S. H., & Jumardi, R. (2022). Pengelompokan Daerah Rawan Demam Berdarah Dengan Metode K-Means Clustering . Jurnal Informasi Dan Teknologi, 4(4), 185-190. https://doi.org/10.37034/jidt.v4i4.213