Pemilihan Karyawan Terbaik Menggunakan Metode Simple Additive Weighting Berbasis Sistem Pendukung Keputusan

Main Article Content

Dinar Ajeng Kristiyanti
Natanael Sayoeti

Abstract

One alternative in making effective decisions is the Decision Support System (DSS). The selection of the best employees still has weaknesses in PT. Petromitra Pacific Internusa so that it will trigger conflicts between employees. In this study, the Simple Additive Weighting (SAW) method was used to process employee data in all divisions to obtain accurate results. The SAW method is one of the methods that can assist in the decision-making process for selecting the best 100 employees by providing criteria and preference weights that can be determined according to applicable regulations such as 35% discipline criteria, 15% cooperation, 45% leadership, and honesty. 10%. This study aims to provide more accurate results and make it easier for the Personnel or HRD department to choose the best employees at PT. Petromitra Pacific Internusa. The results of this study are in the form of determining the selection of the best employees who are identified based on the results of the highest score. So that they will automatically become the best employees and will receive bonuses, as well as get a promotion.

Article Details

How to Cite
Kristiyanti, D. A., & Sayoeti, N. (2022). Pemilihan Karyawan Terbaik Menggunakan Metode Simple Additive Weighting Berbasis Sistem Pendukung Keputusan. Jurnal Informasi Dan Teknologi, 4(2), 103-107. https://doi.org/10.37034/jidt.v4i2.196
Section
Articles

References

Harahap, A.N., 2013. Sistem Pengukuran Detak Jantung Manusia Menggunakan Media Online dengan Jaringan Wi-Fi Berbasis PC. Saintia Fisika, Medan.

Hardika, N., 2016. Profil Tingkat Kemampuan Fisik dan Keterampilan Pada Atlet Kempo Prapon Kota Pontianak. Jurnal Pendidikan Olah Raga, Pontianak.

Hartanto, Teguh., 2016, Modul 1 : Prosedur Jaga Mesin. Buku diklat, Jakarta.

Imam, D., 2016. Rancang Bangun Website Smk Ypn Abadi Prabumulih Dengan Menggunakan Bootstrap. Program Studi Sistem Informasi, Sekolah Tinggi Manajemen Informatika Dan Komputer Prabumulih, Prabumulih.

Jati, Bambang Murdaka Eka., 2020. Pengantar Fisika Kedokteran. UGM PRESS, Yogyakarta.

Karina, P. and Thohari, A.H., 2018. Perancangan Alat Pengukur Detak Jantung Menggunakan Pulse Sensor Berbasis Raspberry, Journal of Applied Informatics and Computing (JAIC), 2(2), Batam.

Kementrian Kesehatan Republik Indonesia., 2019. Tata Cara Klasifikasi 2, Direktorat Jenderal Kefarmasian dan Alat Kesehatan, informasi alkes, Jakarta.

Kviesis-Kipge, E., Mečņika, V. and Rubenis, O., 2012. Miniature wireless photoplethysmography devices: integration in garments and test measurements, In Biophotonics: Photonic Solutions for Better Health Care III (Vol. 8427, p. 84273H), International Society for Optics and Photonics.

Pearce, E.C., 2016, Anatomi dan fisiologi untuk paramedis, PT Gramedia Pustaka Utama, Jakarta.

R. M. Jones., 2008, Penilaian Umum dan Tanda - tanda Vital Vol. 2, pp. 1–33.

Standards of Training Certification and Watchkeeping for Seafarer (STCW) 1978 amendment 2010, IMO, London.

Studio, S., 2015, Grove Temperature and Humidity sensor, Product Details, China.

Sugiyono., 2015, “Metode Penelitian Manajemen” Edisi Keempat, Alfabeta, Bandung.

Suhaeb Sutarsi., 2017. Buku Ajar: Mikrokontroler dan Interface, UNM, Makasar.

Welis, W., dan Sazeli, R.M., 2013, Gizi untuk aktifitas fisik dan kebugaran, Sukabina Press, Padang.

Wijaya, N.H., Rahmasary, D. and Alvian, A.G., 2018, Alat Ukur Detak Jantung dan Suhu Tubuh Dilengkapi Penyimpanan Data, SNATIF, 5(1), Yogyakarta