Metode Monte Carlo untuk Memprediksi Jumlah Tamu Menginap

Main Article Content

Hasnatul Hidayah

Abstract

The Mandeh Tourism Area is one of the most visited marine tourism destinations in West Sumatra. The Mandeh Tourism Area is also included in one of the tourism and creative economy development programs by the Government of the Republic of Indonesia. Baga Beach Cottage is one of the inns located in the Mandeh Tourism Area. Currently the inn consists of 5 cottages that can accommodate 30 guests. At certain times this inn cannot accommodate all the guests who want to stay, so it is recommended to go to another inn, this of course reduces the amount of income that should be obtained. Therefore, I want to predict the number of guests using the Monte Carlo method which is expected to be used to make it easier for business managers to make decisions. This study aims to predict the number of guests staying in the following year which is expected to be used to facilitate business managers in making decisions. The data processed is data on the number of guests staying from 2018 to 2020 using the Monte Carlo method. The results of data processing show that the level of prediction accuracy using the Monte Carlo method is 84%. The Monte Carlo method can be used to predict the number of guests staying at Baga Beach Cottage in the following year so that it can be used to facilitate business managers in making decisions.


 

Article Details

How to Cite
Hidayah, H. (2022). Metode Monte Carlo untuk Memprediksi Jumlah Tamu Menginap. Jurnal Informasi Dan Teknologi, 4(1), 76-80. https://doi.org/10.37034/jidt.v4i1.193
Section
Articles

References

Daftar Pustaka
Alfikrizal, K., Defit, S., & Yunus, Y. (2021). Simulasi Monte Carlo dalam Prediksi Jumlah Penumpang Angkutan Massal Bus Rapid Transit Kota Padang. Jurnal Informatika Ekonomi Bisnis. doi:10.37034/infeb.v3i2.72
Amin, F. A. M., Sukeri, N. A. S. M., Hasbullah, N., & Jamaludin, N. (2019). Forecasting Value at Risk for Malaysian Palm Oil using Monte Carlo Simulation. International Journal of Academic Research in Business and Social Sciences, 9(9). doi:10.6007/ijarbss/v9-i9/6418
Anggraini, S. D., & Nurcahyo, G. W. (2021). Prediksi Peningkatan Jumlah Pelanggan dengan Simulasi Monte Carlo. Jurnal Informatika Ekonomi Bisnis, 95–100. doi:10.37034/infeb.v3i3.92
Apri, M. (2019). Simulasi Monte Carlo untuk Memprediksi Jumlah Kunjungan Pasien. Jursima, 7(2), 92. doi:10.47024/js.v7i2.176
Astia, R. Y., Santony, J., & Sumijan, S. (2019). Prediction Of Amount Of Use Of Planning Family Contraception Equipment Using Monte Carlo Method (Case Study In Linggo Sari Baganti District). Indonesian Journal of Artificial Intelligence and Data Mining, 2(1). doi:10.24014/ijaidm.v2i1.5825
Bardane, A., Tajmouati, J., Maghnouj, A., & Dadouch, A. (2020). Monte Carlo Simulation Method Highlighting on the Electron Beam Irradiation on the Structure of SARS-CoV-2. Moscow University Physics Bulletin, 75(6), 638–644. doi:10.3103/s0027134920060041
Carroll, P., Caulfield, B., & Ahern, A. (2019). Modelling the potential benefits of increased active travel. Transport Policy, 79, 82–92. doi:10.1016/j.tranpol.2019.04.020
Chang, G. (2018). Examining the Efficiency of American Put Option Pricing by Monte Carlo Methods with Variance Reduction. International Journal of Economics and Finance, 10(2), 10. doi:10.5539/ijef.v10n2p10
Dewi, D. C., Sumijan, S., & Nurcahyo, G. W. (2020). Simulasi Monte Carlo dalam Mengidentifikasi Peningkatan Penjualan Tanaman Mawar (Studi Kasus di Toko Bunga 5 Bersaudara Kota Solok). Jurnal Informatika Ekonomi Bisnis. doi:10.37034/infeb.v3i2.67
Geni, B. Y., Santony, J., & Sumijan. (2019). Prediksi Pendapatan Terbesar pada Penjualan Produk Cat dengan Menggunakan Metode Monte Carlo. Jurnal Informatika Ekonomi Bisnis, 1(4), 15–20. doi:10.37034/infeb.v1i4.5
Hutahaean, H.D. (2018). Analisa Simulasi Monte Carlo Untuk Memprediksi Tingkat Kehadiran mahasiswa Dalam Perkuliahan (Studi Kasus : STMIK Pelita Nusantara).
Irfani, M. H., & Dafid, D. (2018). Estimasi Pengunjung Menggunakan Simulasi Monte Carlo pada Warung Internet Xyz. Jurnal Informatika Global, 8(2). doi: 10.36982/jiig.v8i2.315
K.Nagarajan, J. Prabhakaran. (2019). Prediction of Stock Price Movements using Monte Carlo Simulation. Regular Issue, 8(12), 2012–2016. doi:10.35940/ijitee.l2919.1081219
Moenir, H. D. (2017). Implementasi ASEAN Tourism Strategic Plan 2011-2015 dalam Kebijakan Pariwisata Indonesia di masa Pemerintahan Jokowi. Andalas Journal of International Studies (AJIS), 6(1), 57. doi:10.25077/ajis.6.1.57-78.2017
Noor, M. F., Indriani, N., & Sukmana, E. (2020). Pembangunan Homestay sebagai Fasilitas Pariwisata Penunjang Kesejahteraan Masyarakat Desa Budaya Pampang, Samarinda. Epigram, 17(2), 133–142. doi:10.32722/epi.v17i2.3460
Oktavia, C. W., Natalia, C., Suprata, F., & Hindratmo, A. (2020). Analisis dan Implementasi Simulasi Monte Carlo untuk Prediksi Kebutuhan Gula berdasarkan Penjualan Bumbu Tabur XYZ. Jurnal METRIS, 21(02), 103–110. doi:10.25170/metris.v21i02.2494
Rahma, A. A. (2020). Potensi Sumber Daya Alam dalam Mengembangkan Sektor Pariwisata Di Indonesia. Jurnal Nasional Pariwisata, 12(1), 1. doi:10.22146/jnp.52178
Sobol’, I. M. (2018). A Primer for the Monte Carlo Method. doi:10.1201/9781315136448
Stella Bornok Ristamora, & Firman Eddy. (2020). Sipiso-Piso Hotel Resort and Cottage (Neo-Vernacular Architecture). International Journal of Architecture and Urbanism, 4(2), 217–226. doi:10.32734/ijau.v4i2.4526
Stoffova, V., & Horváth, R. (2020). Monte Carlo Method In Educational Practice. ICERI2020 Proceedings. doi:10.21125/iceri.2020.1532
Xiang, Z. (2018). From digitization to the age of acceleration: On information technology and tourism. Tourism Management Perspectives, 25, 147–150. doi:10.1016/j.tmp.2017.11.023
Xie, X., Xie, B., Cheng, J., Chu, Q., & Dooling, T. (2021). A simple Monte Carlo method for estimating the chance of a cyclone impact. Natural Hazards, 107(3), 2573–2582. doi:10.1007/s11069-021-04505-2