Behavior Analysis and Prediction of Civil Services Staff in Occupational Functional Positions Using C4.5 Algorithm
Main Article Content
Abstract
Functional positions are not positions that can be filled by every state civil apparatus, their filling is only based on certain expertise and skills as evidenced by certain certifications and/or assessments such as passing a competency test and for promotion to functional positions it is determined by credit numbers. In carrying out their professional duties, functional positions are also independent. The high interest of state civil servants in occupying functional positions, it is necessary to make rules to avoid subjectivity in choosing functional positions, as one solution is to use data mining techniques. Data mining has an important function or method to help get valuable information and increase knowledge for its users. Data mining can be used in various disciplines, such as education, health, agriculture and government. The C4.5 algorithm has the ability to resolve incomplete attribute values and produce rules that are easy to understand, this is evidenced in determining the predictions of state civil apparatus occupying functional positions as evidenced by the test results using the confusion matrix, obtaining an accuracy of 92.54% with a ratio of 80% training data and 20 test data. The information gain value obtained from the education name attribute is the main factor in determining the position in functional positions.
Article Details
References
[2] peraturan menteri pendayagunaan aparatur negara dan reformasi birokrasi republik indonesia nomor 13 tahun 2019 tentang pengusulan, penetapan, dan pembinaan jabatan fungsional pegawai negeri sipil
[3] Ariza, R. (2021). Penguatan Fungsi Organisasi Melalui Jabatan Fungsional Studi Kasus Sekretariat Daerah Provinsi Kepulauan Riau. Jurnal Ilmu Administrasi Negara (JUAN), 9(2), 125-140. https://doi.org/10.31629/juan.v9i2.3884
[4] Cynthia, E. P., & Ismanto, E. (2018). Metode Decision Tree Algoritma C. 45 Dalam Mengklasifikasi Data Penjualan Bisnis Gerai Makanan Cepat Saji. Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika), 3, 1-13.
[5] Windarto, A. P., Hartama, D., & Damanik, I. S. (2019). Penerapan klasifikasi c4. 5 dalam meningkatkan sistem pembelajaran mahasiswa. KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), 3(1). http://dx.doi.org/10.30865/komik.v3i1.1665
[6] Harani, N.H., P, C. (2020). “Penerapan Algoritma Adaboost Guna Menentukan Pola MasuknyaMahasiswa Baru”. TRANSFORMTIKA. 18(2). DOI: http://dx.doi.org/10.26623/transformatika.v18i1.1606
[7] Mardi, Y. (2017). Data Mining: Klasifikasi Menggunakan Algoritma C4. 5. Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika, 2(2), 213-219. https://doi.org/10.22202/ei.2016.v2i2.1465
[8] Nasution, L. S., Maya, W. R., Halim, J., & Marsono, M. (2020). “Data Mining Untuk Menganalisa Pola Pembelian Perak Dengan Menggunakan Algoritma Fp-Growth Pada Toko Emas Dan Perak Adi Saputra Tanjung”. J-SISKO TECH (Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD). 3(2): 96-107. https://doi.org/10.53513/jsk.v3i2.2039
[9] Sunarti, S. (2019). Prediksi Promosi Jabatan Karyawan Dengan Algoritma C4. 5 (Studi Kasus: Apartemen Senayan Jakarta). Techno. Com, 18(4), 288-298. https://doi.org/10.33633/tc.v18i4.2471
[10] Hozairi, H., Anwari, A., & Alim, S. (2021). Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes. Network Engineering Research Operation, 6(2), 133-144. http://dx.doi.org/10.21107/nero.v6i2.237
[11] Sagala, R. M. (2021). Prediksi Kelulusan Mahasiswa Menggunakan Data Mining Algoritma K-Means. TeIKa, 11(2), 131-142. https://doi.org/10.36342/teika.v11i2.2610
[12] Supriadi, C., Purnomo, H. D., & Sembiring, I. (2020). Sensitivitas Sistem Pencarian Artikel Bahasa Indonesia Menggunakan Metode n-gram Dan Tanimoto Cosine. Jurnal Transformatika, 18(1), 63-70.
DOI: http://dx.doi.org/10.26623/transformatika.v18i1.2184
[13] Suweleh, A.,S., Susilowati, D., Hairani. (2020). “Aplikasi Penentuan Penerima Beasiswa Menggunakan Algoritma C4.5”. JurnalBITe. 2(1). https://doi.org/10.30812/bite.v2i1.798
[14] Simorangkir, H.,S. (2019). “Analisa Data Ekspedisi Paket Dengan Menerapkan Algoritma Rough Set (Studi Kasus: Jne Agen Menteng Medan)”. KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer). 3(1). https://doi.org/10.30865/komik.v3i1.1593
[15] Pribadi, E. S., Poningsih, P., & Tambunan, H. S. (2020). “Analisa Tingkat Kepuasan Masyarakat Terhadap Pelayanan Pengadilan Agama Pematangsiantar Menggunakan Algoritma C4.5”. Brahmana: Jurnal Penerapan Kecerdasan Buatan. 2(1): 33-40.
https://doi.org/10.30645/brahmana.v2i1.46
[16] Dewi, K. R., Mauladi, K.F., Masruroh. (2020). “Analisa Algoritma C4. 5 untuk Prediksi Penjualan Obat Pertanian di Toko Dewi Sri”. Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi). 4(3). 109-114. https://doi.org/10.29407/inotek.v4i3.72
[17] Fadli, F., & Butar, B. B. (2019). “Penerapan Decision Tree Menggunakan Algoritma C4. 5 Untuk Deteksi Demam Berdarah Pada RS. IMC Bintaro”. Indonesian Journal on Software Engineering (IJSE). 5(1). 75-86.
https://doi.org/10.31294/ijse.v5i1.5866