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Abstract 

The rapid development of information technology has led to the exponential growth of data generated from various sectors, 

such as healthcare services, social media, information systems, and other digital activities. This condition has given rise to the 

concept of big data, which cannot be optimally processed using conventional data processing technologies. Therefore, 

distributed computing platforms are required to efficiently handle large-scale data storage and processing. Apache Hadoop is 

one of the widely used big data technologies due to its distributed architecture that supports scalability, parallel processing, and 

fault tolerance. This study aims to analyze the architecture of Apache Hadoop and explain the role of each of its components 

in supporting large-scale data processing. The research method employed is a qualitative literature study, conducted through 

the review of books, scientific articles, and related publications on Hadoop. The results indicate that Hadoop consists of three 

main components: the Hadoop Distributed File System as a distributed storage system, MapReduce as a programming model 

for parallel data processing, and Yet Another Resource Negotiator, which functions in cluster resource management and 

scheduling. The integration of these components enables Hadoop to manage large-scale data in a reliable and distributed 

manner. However, Hadoop has limitations related to its batch-based processing model, which is less suitable for real-time 

processing needs, thus requiring consideration of complementary technologies according to application requirements. 
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1. Introduction  

The rapid advancement of technology has led to a significant increase in data generation, both consciously and 

unconsciously, by various parties. This data is produced across multiple sectors, including healthcare services, 

social media, device and server activity logs, and financial markets, with an extremely high growth rate. The 

accumulation of data from these diverse sources results in datasets characterized by large volume, high velocity, 

and high variety, commonly referred to as big data [1].  

Big data represents an abstract concept that refers to large-scale and complex data integration that cannot be 

efficiently stored, processed, or analyzed using conventional data management tools. It is commonly characterized 

by the five Vs: volume, which reflects the massive scale of data generation; velocity, which emphasizes the need 

for timely data collection and analysis; variety, which includes structured, semi-structured, and unstructured data 

such as text, images, audio, and video; veracity, which relates to data accuracy and reliability; and value, which 

highlights the potential insights and benefits that can be extracted from data despite the typically low value density 

of raw data [2][3]. These characteristics distinguish big data from traditional datasets and underscore the increasing 

complexity of modern data environments. 

Big data processing is a complex task and cannot be treated in the same manner as small-scale data processing. As 

data volume, velocity, and complexity continue to increase, traditional data processing methods, models, and 

technologies become insufficient due to limitations in performance, storage capacity, and processing capabilities. 

Conventional analytical approaches are often unable to adapt to the scale and heterogeneity of big data, thereby 

limiting their effectiveness in supporting data-driven decision making. This condition necessitates the development 

of new analytical models, theories, and high-performance computing platforms capable of supporting large-scale 

data storage, processing, and analysis in complex and dynamic environments [4][5]. 

Apache Hadoop is one of the technologies developed to address these challenges. Hadoop is a system that 

integrates distributed file storage and distributed computational processing, operating on cloud server 

infrastructure. The distributed file storage component in Hadoop is known as the Hadoop Distributed File System 

(HDFS), while distributed computation is carried out using the MapReduce framework [6]. Hadoop enables 

efficient data processing by leveraging distributed computing resources, thereby enhancing system performance 

and scalability. 
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Hadoop is designed to process large-scale data through three core components: HDFS, MapReduce, and Yet 

Another Resource Negotiator (YARN). HDFS functions as a reliable and scalable distributed storage system, 

MapReduce provides a batch-oriented parallel data processing model, and YARN is responsible for cluster 

resource management [7]. MapReduce offers a high level of abstraction by allowing users to define parallel 

processing tasks without managing low-level details such as data distribution, load balancing, and fault tolerance. 

In this model, input data are divided into multiple segments processed concurrently during the map phase, and 

intermediate results are aggregated during the reduce phase to produce the final output [8]. This abstraction enables 

MapReduce to efficiently process large volumes of data in a distributed environment while maintaining system 

reliability. 

Although Hadoop has been widely implemented, a comprehensive understanding of its architecture and the role 

of each component in supporting large-scale data processing remains limited. Most previous studies focus 

primarily on Hadoop implementations, while in-depth analyses of Hadoop’s architecture and the contributions of 

its individual components are still relatively scarce. Therefore, this study aims to analyze the architecture of 

Apache Hadoop and explain how each component contributes to supporting large-scale data processing. The results 

of this analysis are expected to provide a clearer understanding of Hadoop’s role as a big data technology and serve 

as a reference for future development and utilization of large-scale data processing technologies. 

2. Research Methods  

This study employs a qualitative research method with a literature review approach. This method was selected 

because it aligns with the research objective of analyzing the architecture of Apache Hadoop and the role of each 

of its components in supporting large-scale data processing, based on theoretical studies and previous research, 

without conducting direct experiments or field data collection. 

3. Results and Discussion 

3.1. Apache Hadoop Architecture 

Apache Hadoop is a distributed framework designed to handle large-scale data processing by utilizing a collection 

of computers known as a cluster. As illustrated in Figure 1, the Hadoop cluster architecture consists of a 

MasterNode and multiple WorkerNodes. The MasterNode is responsible for running the NameNode and 

ResourceManager components, while the WorkerNodes execute the DataNode, NodeManager, and MapReduce 

processes. The NameNode and DataNode function as managers of the HDFS storage system, whereas the 

ResourceManager and NodeManager are responsible for resource allocation and distribution to ensure efficient 

cluster utilization [9]. 

 

Figure 1. Hadoop Cluster Architecture 

The division of roles between the MasterNode and WorkerNodes enables Hadoop to operate in a distributed and 

coordinated manner. This separation of functions allows data storage and processing to be performed in parallel, 

preventing workload concentration on a single node. Consequently, this architecture directly contributes to 

improved performance and scalability in handling large-scale data. Furthermore, Hadoop’s architecture is designed 

to overcome the limitations of single-machine computing systems that are unable to efficiently manage massive 

data volumes. In a Hadoop cluster, data is stored using HDFS, while data processing is carried out through the 

MapReduce programming model [10]. 

In practice, Hadoop can be deployed in three modes: standalone mode, which runs within a single Java process; 

pseudo-distributed mode, which operates on a single machine using multiple separate daemons; and fully 
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distributed or cluster mode, which utilizes multiple machines within a cluster. In cluster mode, one node acts as 

the NameNode that manages metadata and file system namespaces, while the remaining nodes function as 

DataNodes and TaskTrackers to store data and execute MapReduce processes [11]. 

3.2. The Role of HDFS in Supporting Large-Scale Data Storage 

Hadoop supports large-scale data storage through the Hadoop Distributed File System (HDFS). HDFS is developed 

using Java to provide reliable and consistent storage for massive datasets while enabling high-throughput data 

access. Data is stored in blocks that are replicated and distributed across multiple nodes within the cluster. This 

transparent data distribution mechanism simplifies storage management and reduces administrative overhead in 

big data systems [12]. 

The replication mechanism in HDFS also provides fault tolerance by maintaining multiple copies of data blocks 

to anticipate hardware or storage failures. In addition, HDFS supports NameNode failure handling through the use 

of a Secondary NameNode or by backing up metadata to multiple file systems [13]. As shown in Figure 2, the 

NameNode manages file system metadata, including block locations and file structure, while DataNodes store the 

data blocks physically. This separation of responsibilities allows HDFS to efficiently manage large-scale data 

without overburdening a single node. These characteristics make HDFS highly suitable for supporting large-scale 

data processing while maintaining performance and storage reliability. 

 

Figure 2. HDFS Components 

Furthermore, HDFS applies the concept of data locality by assigning processing tasks to nodes where the 

corresponding data blocks are stored. This strategy reduces data transfer across the network and enhances 

processing performance in large-scale distributed systems [14]. 

3.3. The Role of MapReduce in Distributed Data Processing 

MapReduce is one of the most widely used data processing models for Big Data applications. Hadoop represents 

the industry-standard implementation of the MapReduce framework and provides a robust platform for handling 

data-intensive applications such as web crawling, data mining, and web indexing. MapReduce also supports 

distributed and parallel processing of large-scale structured and unstructured datasets stored in HDFS, enabling 

efficient computation across clusters of commodity hardware [15]. 

One of the key strengths of Hadoop MapReduce is its built-in fault-tolerance mechanism, which enables reliable 

execution in large-scale distributed environments. MapReduce allowing failed or slow-running tasks to be 

automatically re-executed without affecting the overall job execution. Intermediate computation results are 

persistently stored on disk, enabling the system to recover and resume processing from the most recent successful 

execution state in the event of node or task failures, making MapReduce well suited for batch-oriented processing 

of massive datasets on clusters composed of commodity hardware [16]. Parallel processing also enables system 

recovery from partial server failures during execution, and as MapReduce clusters have become increasingly 

widespread, task scheduling has emerged as a critical factor in determining system performance [17]. 

The MapReduce data processing workflow in Apache Hadoop is illustrated in Figure 3. The process begins with 

input data being split into smaller chunks for parallel processing. During the mapping phase, each data chunk is 

processed into key–value pairs. These results then enter the shuffling phase, where data is grouped based on 

identical keys before being forwarded to the reducing phase. Finally, in the reducing phase, grouped data is 

processed to generate the final output, which is stored as the processing result. This workflow demonstrates how 

MapReduce enables efficient and distributed processing of large-scale data. Nevertheless, MapReduce is primarily 

designed for batch-oriented workloads, making it less suitable for low-latency or real-time data processing 

scenarios. 
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Figure 3. MapReduce Process 

3.4. The Role of YARN in Resource Management and Scheduling 

YARN is a core component of Hadoop that manages resources and schedules applications within a distributed 

computing cluster. Its primary function is to allocate resources such as CPU and memory efficiently among 

applications running on Hadoop. YARN, also known as MapReduce 2, was developed to address scalability 

limitations in the first-generation MapReduce, particularly in very large clusters. YARN enhances Hadoop’s ability 

to manage resources and support the concurrent execution of diverse applications [18]. 

Figure 4 illustrates the YARN architecture and its operational processes. The process begins when a client submits 

an application execution request to the ResourceManager, which consists of a Scheduler and an Application 

Manager. The Scheduler allocates containers based on available cluster resources, while the Application Manager 

oversees the application lifecycle. NodeManagers running on each node manage local resources and monitor 

container execution. Applications run within containers, including the ApplicationMaster, which coordinates task 

execution and communicates with the ResourceManager to request additional resources. This integration enables 

YARN to support parallel application execution while improving Hadoop’s scalability and overall performance. 

 

Figure 4. YARN Architecture 

Beyond scalability, YARN significantly improves resource utilization efficiency within Hadoop clusters through 

its flexible resource allocation mechanism, which reduces resource wastage commonly found in traditional 

MapReduce systems. Although challenges related to centralized resource management remain, YARN continues 

to be a fundamental component for large-scale data processing due to its ability to enhance performance, flexibility, 

and support for multiple concurrent applications [18]. Recent studies further demonstrate that YARN can be 

deployed in container-based and serverless-oriented environments to enable dynamic and application-specific 

resource management. By providing customized YARN clusters for individual applications or users, this approach 

improves resource isolation, scalability, and overall system performance compared to conventional centralized 

YARN deployments, reinforcing YARN’s relevance in modern Big Data architectures that require elastic resource 

allocation and efficient multi-tenant support [19]. 

3.5. Limitations of Apache Hadoop 

Apache Hadoop offers substantial advantages in large-scale data processing through its distributed architecture, 

which supports high scalability, parallel processing, and fault tolerance. This technology enables efficient storage 

and processing of massive datasets using clusters of commodity hardware. However, Hadoop also has limitations, 

particularly due to its batch-oriented processing model, which results in high latency and makes it less suitable for 

real-time applications. In addition, Hadoop MapReduce relies heavily on disk-based input/output operations, 

where intermediate results are repeatedly written to and read from disk during the map and reduce phases. This 

disk-intensive processing introduces significant performance overhead, especially for large-scale and iterative 

workloads. Furthermore, Hadoop performance is highly dependent on configuration parameters, and suboptimal 



TNM Dhuha, et al 

 

 

Jurnal Informasi dan Teknologi − Vol.  7, No. 4 (2025) 1-6 

5 

 

 

default settings can lead to inefficient resource utilization and increased execution time as data volume grows, 

thereby increasing system complexity and operational overhead [20]. 

As data processing demands continue to evolve, alternative technologies such as Apache Spark have emerged. 

Apache Spark is an open-source framework designed for large-scale data processing, with its primary advantage 

being in-memory computation. Spark utilizes the Resilient Distributed Dataset (RDD) concept, which allows 

intermediate results to be stored in memory, thereby significantly improving processing speed and efficiency, 

particularly for iterative and real-time analytics [21]. 

4. Conclusion 

This study analyzed the architecture of Apache Hadoop and the roles of its core components in supporting large-

scale data processing. Apache Hadoop provides a distributed framework that enables scalable, fault-tolerant, and 

parallel processing of massive datasets using clusters of commodity hardware. Its architecture effectively addresses 

the challenges of modern data environments by integrating distributed storage, parallel computation, and 

centralized resource management. 

The results show that HDFS ensures reliable and scalable data storage through replication and data locality, 

MapReduce supports fault-tolerant batch-oriented parallel processing, and YARN enhances resource utilization 

by enabling flexible and concurrent application execution. The integration of these components allows Hadoop to 

process large volumes of data efficiently in distributed environments. 

However, Apache Hadoop is limited by its batch-based and disk-intensive processing model, which leads to higher 

latency and reduces its suitability for real-time and iterative workloads. Despite these limitations, Hadoop remains 

effective for large-scale batch analytics and data-intensive applications where reliability and scalability are 

prioritized. Future research may explore hybrid architectures or integration with other big data frameworks to 

improve processing flexibility and performance. 
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