Klasterisasi Penempatan Siswa yang Optimal untuk Meningkatkan Nilai Rata-Rata Kelas Menggunakan K-Means
Keywords:
KDD, Clustering, K-Means, Principal School Data, Class Average Score
AbstractThe implementation of learning by teachers can measure the quality of schools and students. Schools with diverse student backgrounds need to take strategic steps in managing learning to get optimal learning outcomes. Good learning designs and techniques can motivate students' interest in learning. The teacher's role is very important in managing learning to create an effective teaching and learning process. Data Mining or also known as Knowledge Discovery in Database (KDD) is the process of extracting knowledge from large data to find new patterns to get new knowledge and information. Data Mining technology is used to explore existing knowledge in the database. One of the methods used in data mining is clustering with the K-Means algorithm. This study aims to conduct student clustering to obtain a balanced class composition in order to improve the quality and student learning outcomes as seen in the increasing in the class average score. The data processed in this study came from the main school data as many as 90 students of the XI class of Computer Network Engineering Skills Competency at SMKN Negeri 2 Padang Panjang in the 2020/2021 school year. The variables used in data processing are student scores, parents' income and the distance from where students live to school. The student clustering calculation using K-Means succeeded in grouping 90 students into 3 clusters where cluster 1 totaled 47 students, cluster 2 totaled 10 students and cluster 3 totaled 33 students. Each member of the cluster will be divided evenly into 3 groups studying to get a balanced class composition. This research can be used as a basis for decision making by schools in clustering student placements to improve learning outcomes. By the increasing in the grade point average, the school average score will also increased. ReferencesHanifah, E. N., & Wulandari, T. (2018). Penggunaan Metode Card Sort Untuk Meningkatkan Keaktifan Siswa dalam Pembelajaran IPS Kelas VIII E SMP Negeri 1 Majalengka. Jipsindo, 5(1), 61. DOI: https://doi.org/10.21831/jipsindo.v5i1.20184 . Setiaji, G. G., Khoirudin, K., & Vydia, V. (2019). Komparasi Metode Clustering K-Means dan Fuzzy C-Means Untuk Mempredeksi Ketepatan Waktu Lulus. Jurnal Pengembangan Rekayasa dan Teknologi, 15(1), 38. DOI: https://doi.org/10.26623/jprt.v15i1.1488 . Siregar, A. M. (2018). Penerapan Algoritma K-Means Untuk Pengelompokan Daerah Rawan Bencana di Indonesia. Internal (Information System Journal), 1(2), 1–10. DOI: https://doi.org/10.32627/internal.v1i2.42 . Virgo, I., Defit, S., & Yunus, Y. (2020). Klasterisasi Tingkat Kehadiran Dosen Menggunakan Algoritma K-Means Clustering (Studi Kasus Institut Agama Islam Batusangkar). Jurnal Sistim Informasi dan Teknologi, 2(1), 24–29. DOI: https://doi.org/10.37034/jsisfotek.v2i1.22 . Asroni, A., Fitri, H., & Prasetyo, E. (2018). Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik). Semesta Teknika, 21(1). DOI: https://doi.org/10.18196/st.211211 . Zulhendra., Nurcahyo, G. W., & Santony, J. (2018). Algoritma K-Means Clustering Untuk Analisa Data Service Berdasarkan Pengaduan Pelanggan. UNES Journal of Information System, 3(1), 1-7. DOI: https://doi.org/10.31227/osf.io/5byfp . Siburian, T., Safii, M., & Parlina, I. (2019). Penerapan Algoritma K-Means Clustering untuk Pengelompokan Harga Eceran Beras di Pasar Tradisional Berdasarkan Wilayah Kota. Prosiding Seminar Nasional Riset Information Science (Senaris), 1, 927. DOI: https://doi.org/10.30645/senaris.v1i0.101 . Amelio, A., & Tagarelli, A. (2019). Data Mining: Clustering. Encyclopedia of Bioinformatics and Computational Biology, 1, 437–448. DOI: https://doi.org/10.1016/b978-0-12-809633-8.20489-5 . Suryadi, S. (2018). Penerapan Metode Clustering K-Means Untuk Pengelompokan Kelulusan Mahasiswa Berbasis Kompetensi. Jurnal Informatika, 6(1), 52–72. DOI: https://doi.org/10.36987/informatika.v6i1.738 . Vhallah, I., Sumijan, S., & Santony, J. (2018). Pengelompokan Mahasiswa Potensial Drop Out Menggunakan Metode Clustering K-Means. Jurnal Resti (Rekayasa Sistem dan Teknologi Informasi), 2(2), 572–577. DOI: https://doi.org/10.29207/resti.v2i2.308 . Putra, R. R., & Wadisman, C. (2018). Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K Means. Intecoms: Journal of Information Technology and Computer Science, 1(1), 72–77. DOI: https://doi.org/10.31539/intecoms.v1i1.141 . Hasanah, M., Defit, S., & Nurcahyo, G. W. (2019). Implementasi Algoritma K-Means untuk Klasterisasi Peserta Olimpiade Sains Nasional Tingkat SMA. Jurnal Sistim Informasi dan Teknologi, 1(3), 29–34. DOI: https://doi.org/10.35134/jsisfotek.v1i3.7 . Pradnyana, G. A., & Permana, A. A. J. (2018). Sistem Pembagian Kelas Kuliah Mahasiswa dengan Metode K-Means dan K-Nearest Neighbors Untuk Meningkatkan Kualitas Pembelajaran. Juti: Jurnal Ilmiah Teknologi Informasi, 16(1), 59. DOI: https://doi.org/10.12962/j24068535.v16i1.a696 . Mardalius, M. (2017). Implementasi Algoritma K-Means Clustering Untuk Menentukan Kelas Kelompok Bimbingan Belajar Tambahan (Studi Kasus : Siswa Sma Negeri 1 Ranah Pesisir). Proceding SEMILOKA ROYAL. DOI: https://doi.org/10.31219/osf.io/6mec3 . Pandiangan, H. (2019). Penerapan Data Mining dalam Clustering Produksi Daging Sapi di Indonesia Menggunakan Algoritma K-Means. Journal of Computer Networks, Architecture and High Performance Computing, 1(2), 37–44. DOI: https://doi.org/10.47709/cnapc.v1i2.239 . Omolewa, O. T., Oladele, A. T., Adeyinka, A. A., & Oluwaseun, O. R. (2019). Prediction of Student’s Academic Performance using k-Means Clustering and Multiple Linear Regressions. Journal of Engineering and Applied Sciences, 14(22), 8254–8260. DOI: https://doi.org/10.36478/jeasci.2019.8254.8260 . Amirulloh, I. (2019). Pemetaan Kelompok Kerja Siswa dengan Metode Clustering K-Means dan Algoritma Greedy. Jurnal Informatika dan Rekayasa Perangkat Lunak, 1(2). DOI: https://doi.org/10.36499/jinrpl.v1i2.2953 . Pasina, I., Bayram, G., Labib, W., Abdelhadi, A., & Nurunnabi, M. (2019). Clustering Students Into Groups According to Their Learning Style. MethodsX, 6, 2189–2197. DOI: https://dx.doi.org/10.1016%2Fj.mex.2019.09.026 |
Published
2021-09-30
Issue
Section
Articles
How to Cite
Elda, Y., Defit, S., Yunus, Y., & Syaljumairi, R. (2021). Klasterisasi Penempatan Siswa yang Optimal untuk Meningkatkan Nilai Rata-Rata Kelas Menggunakan K-Means. Jurnal Informasi Dan Teknologi, 3(3), 103-108. https://doi.org/10.37034/jidt.v3i3.130
Copyright (c) 2021 Jurnal Informasi dan Teknologi ![]() This work is licensed under a Creative Commons Attribution 4.0 International License. |