Jurnal Informasi & Teknologi
Journal Content
Browse
  • By Issue
  • By Author
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
Atom logo
RSS2 logo
RSS1 logo
  • Submission
  • Author Guidelines
  • Review Process
  • License
  • Publication Fee
  • Cover
  • Access Statement
  • Publication Ethics

Template word

Similarity Checker

Cover Page

Statistik

Statistics Visitors


Flag Counter

  • Home
  • Current
  • Archive
  • Editorial Team
  • Reviewer
  • Contact
  • Announcement
  • Search
Home > Articles

Akurasi Pemberian Insentif Menggunakan Algoritma K-Medoids Terhadap Tingkat Kedisiplinan Pegawai

  • Wendi Robiansyah
    Universitas Putra Indonesia YPTK Padang

  • Gunadi Widi Nurcahyo
    Universitas Putra Indonesia YPTK Padang


DOI: https://doi.org/10.37034/jidt.v3i3.125
Keywords: Accuracy, Incentives, K-Medoids, Level of Discipline, Employees

Abstract

Assessment of a discipline is a performance evaluation stage that is important for the continuity of company activities. Monitoring and assessment of an employee's discipline must be carried out continuously in order to improve the quality of human resources. This research was conducted to make the accuracy of providing incentives based on the level of employee discipline. The data processed in this study is a recapitulation of the attendance of AMIK and STIKOM Tunas Bangsa Pematangsiantar employees as many as 25 employees as a sample. For grouping the employee data using the K-Medoids Algorithm. K-Medoids groups a set of n objects into a number of k clusters using the partition clustering method. Furthermore, the employee data is processed using Rapid Miner software. Research using this method obtained results in the form of grouping employees into 3 groups that have good discipline levels of 12 employees, sufficient discipline levels of 8 employees, and less disciplinary levels of 5 employees. Based on the grouping results that have been produced, it can be a consideration for the leadership to determine the amount of incentives for employees.

References

Yuaningsih, L. (2020). Penerapan Kedisiplinan dalam Meningkatkan Kinerja Pegawai Badan Kepegawaian Pendidikan dan Pelatihan Kota Bandung. Jurnal Soshum Insentif,3(1), 77–85. DOI: https://doi.org/10.36787/jsi.v3i1.224 .

Agustina, N., & Prihandoko, P. (2018). Perbandingan Algoritma K-Means dengan Fuzzy C-Means Untuk Clustering Tingkat Kedisiplinan Kinerja Karyawan. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 2(3). DOI: https://doi.org/10.29207/resti.v2i3.492 .

Kamila, I., Khairunnisa, U., & Mustakim, M. (2019). Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau. Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi, 5(1). DOI: http://dx.doi.org/10.24014/rmsi.v5i1.7381 .

Marlina, D., Lina, N., Fernando, A., & Ramadhan, A. (2018). Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi, 4(2). DOI: http://dx.doi.org/10.24014/coreit.v4i2.4498

Buulolo, E., Syahputra, R., & Fau, A. (2020). Algoritma K-Medoids Untuk Menentukan Calon Mahasiswa yang Layak Mendapatkan Beasiswa Bidikmisi di Universitas Budi Darma. Jurnal Media Informatika Budidarma, 4(3). DOI: http://dx.doi.org/10.30865/mib.v4i3.2240 .

Samudi, S., Widodo, S., & Brawijaya, H. (2020). The K-Medoids Clustering Method for Learning Applications during the COVID-19 Pandemic. SinkrOn, 5(1). DOI: https://doi.org/10.33395/sinkron.v5i1.10649 .

Pulungan, N., Suhada, S., & Suhendro, D. (2019). Penerapan Algoritma K-Medoids Untuk Mengelompokkan Penduduk 15 Tahun Keatas Menurut Lapangan Pekerjaan Utama. KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), 3(1). DOI: http://dx.doi.org/10.30865/komik.v3i1.1609 .

Prakasawati, P. E., Chrisnanto, Y. H., & Hadiana, A. I. (2019). Segmentasi Pelanggan Berdasarkan Produk Menggunakan Metode K- Medoids. KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), 3(1). DOI: http://dx.doi.org/10.30865/komik.v3i1.1610 .

Wang, J., Wang, K., Niu, J., & Liu, W. (2018). A K-Medoids Based Clustering Algorithm For Wireless Sensor Networks. International Workshop on Advanced Image Technology (IWAIT). DOI: http://doi.org/10.1109/IWAIT.2018.8369769 .

Ozdemir, O., & Kaya, A. (2018). K-Medoids and Fuzzy C-Means Algorithms For Clustering Co2 Emissions of Turkey and Other OECD Countries. Applied Ecology and Environmental Research, 16(3), 2513–2526. DOI: http://doi.org/10.15666/aeer/1603_25132526 .

Kiruthika, M., & Sukumaran, S. (2019). An Improved K-Medoids Partitioning Algorithm for Clustering of Images. International Journal of Computer Sciences and Engineering, 7(4), 759–764. DOI: http://doi.org/10.26438/ijcse/v7i4.759764 .

Atmaja, E. H. S. (2019). Implementation of k-Medoids Clustering Algorithm to Cluster Crime Patterns in Yogyakarta. International Journal of Applied Sciences and Smart Technologies, 1(1), 33–44. DOI: http://doi.org/10.24071/ijasst.v1i1.1859 .

Onan, A. (2017). A K-medoids Based Clustering Scheme With An Application to Document Clustering. International Conference on Computer Science and Engineering (UBMK). DOI: http://doi.org/10.1109/ubmk.2017.8093409 .

Kim, T. Y., Kim, S., Kim, J. A., Choi, J. Y., Lee, J. H., Cho, Y., & Nam, Y. K. (2018). Automatic identification of Java Method Naming Patterns Using Cascade K-Medoids. KSII Transactions on Internet and Information Systems, 12(2). DOI: http://doi.org/10.3837/tiis.2018.02.020 .

Syukra, I., Hidayat, A., & Fauzi, M. Z. (2019). Implementation of K-Medoids and FP-Growth Algorithms for Grouping and Product Offering Recommendations. Indonesian Journal of Artificial Intelligence and Data Mining, 2(2). DOI: http://doi.org/10.24014/ijaidm.v2i2.8326 .

Yunita, F. (2018). Penerapan Data Mining Menggunakan Algoritma K-Means Clustring pada Penerimaan Mahasiswa Baru. SISTEMASI, 7(3). DOI: http://doi.org/10.32520/stmsi.v7i3.388 .

Nishom, M. (2019). Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square. Jurnal Informatika: Jurnal Pengembangan IT, 4(1), 20–24. DOI: http://dx.doi.org/10.30591/jpit.v4i1.1253 .

DOWNLOAD
Published
2021-09-30
Issue
2021, Vol. 3, No. 3
Section
Articles
How to Cite
Robiansyah, W., & Nurcahyo, G. W. (2021). Akurasi Pemberian Insentif Menggunakan Algoritma K-Medoids Terhadap Tingkat Kedisiplinan Pegawai. Jurnal Informasi Dan Teknologi, 3(3), 139-144. https://doi.org/10.37034/jidt.v3i3.125
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Copyright (c) 2021 Jurnal Informasi dan Teknologi

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.



Indexed:

Index Copernicus International (ICI) Google Scholar 

Registered:


Power by:
            

ISSN: 2714-9730 (electronic)
DOI: 10.37034/jidt
Publisher: Rektorat Universitas Putra Indonesia YPTK Padang

Kampus Universitas Putra Indonesia YPTK Padang
Jl. Raya Lubuk Begalung Padang, Sumatera Barat - 25221
Website : http://www.jidt.org | Email : jidt@upiyptk.ac.id